scholarly journals The functional role of microRNAs in laryngeal carcinoma

2017 ◽  
Vol 12 (1) ◽  
pp. 460-464
Author(s):  
Jinzhang Cheng ◽  
Junjun Chen ◽  
Zonggui Wang ◽  
Dan Yu ◽  
Yuanzhang Zu

AbstractMicroRNAs are a class of non-coding, small RNAs, which modulate gene expression at the post-transcriptional level. Numerous studies have showed microRNAs are involved in the pathogenesis of laryngeal cancer through regulating tumor-related genes such as oncogenes or tumor suppressor genes. In this review, we summarize recent progress on the function of microRNAs in laryngeal cancer. We focus on potential use of microRNAs in laryngeal cancer diagnosis and prognosis.

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 887
Author(s):  
Gaël Runel ◽  
Noémie Lopez-Ramirez ◽  
Julien Chlasta ◽  
Ingrid Masse

Since the crucial role of the microenvironment has been highlighted, many studies have been focused on the role of biomechanics in cancer cell growth and the invasion of the surrounding environment. Despite the search in recent years for molecular biomarkers to try to classify and stratify cancers, much effort needs to be made to take account of morphological and nanomechanical parameters that could provide supplementary information concerning tissue complexity adaptation during cancer development. The biomechanical properties of cancer cells and their surrounding extracellular matrix have actually been proposed as promising biomarkers for cancer diagnosis and prognosis. The present review first describes the main methods used to study the mechanical properties of cancer cells. Then, we address the nanomechanical description of cultured cancer cells and the crucial role of the cytoskeleton for biomechanics linked with cell morphology. Finally, we depict how studying interaction of tumor cells with their surrounding microenvironment is crucial to integrating biomechanical properties in our understanding of tumor growth and local invasion.


Neurology ◽  
1998 ◽  
Vol 51 (5) ◽  
pp. 1250-1255 ◽  
Author(s):  
J. Fueyo ◽  
C. Gomez-Manzano ◽  
W. K. Alfred Yung ◽  
A. P. Kyritsis

MicroRNA ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Saiedeh Razi Soofiyani ◽  
Kamram Hosseini ◽  
Alireza Soleimanian ◽  
Liela Abkhooei ◽  
Akbar Mohammad Hoseini ◽  
...  

: MicroRNAs (miRNAs) are highly conserved non-coding RNAs involved in many physiological processes such as cell proliferation, inhibition, development of apoptosis, differentiation, suppresses tumorigenicity, and regulating cell growth. The description of the alterations of miRNA expression patterns in cancers will be helpful to recognize biomarkers for early detection and possible therapeutic intervention in the treatment of cancers. Recent studies have shown that miR-451 is broadly dysregulated in lung cancer and is a crucial agent in lung tumor progression. This review summarizes recent advances of the potential role of miR-451 in lung cancer diagnosis, prognosis, and treatment and provides an insight into the potential use of miR-451 for the development of advanced therapeutic methods in lung cancer.


2016 ◽  
Vol 39 (6) ◽  
pp. 2186-2202 ◽  
Author(s):  
Yanping Gao ◽  
Bing Feng ◽  
Siqi Han ◽  
Lu Lu ◽  
Yitian Chen ◽  
...  

Emerging evidence has shown that microRNAs (miRNAs) play essential roles in regulating human cancers development and progression. However, the underlying mechanisms remain to be further explored. MiRNAs are a class of endogenous, non-coding, 18-24 nucleotide length single-strand RNAs that moderate gene expression primarily at post-transcriptional level. There is a growing body of literature that recognizes the importance of microRNA (miR)-129 during the development of cancers. Aberrant expression of miR-129 has been detected in various types of human cancers and the validated target genes are involved in cancer-related biological processes such as DNA methylation, cell proliferation, apoptosis, cell cycle, and metastasis. In this review, we summarized the roles of miR-129 family members and their target genes in tumorigenesis and clinical treatment of human cancers, highlighting the potential roles of miR-129 as biomarkers for cancer diagnosis and prognosis, and promising tools for cancer treatment.


Epigenomics ◽  
2019 ◽  
Vol 11 (13) ◽  
pp. 1539-1552
Author(s):  
Ana Paço ◽  
Renata Freitas

Several HOX genes are aberrantly expressed in a wide range of cancers interfering with their development and resistance to treatment. This seems to be often caused by alterations in the methylation profiles of their promoters. The role of HOX gene products in cancer is highly ‘tissue specific’, relying ultimately on their ability to regulate oncogenes or tumor-suppressor genes, directly as transcriptional regulators or indirectly interfering with the levels of epigenetic regulators. Nowadays, different strategies have been tested the use of HOX genes as therapeutic targets for cancer diagnosis and treatment. Here, we trace the history of the research concerning the involvement of HOX genes in cancer, their connection with epigenetic regulation and their potential use as therapeutic targets.


2021 ◽  
Author(s):  
Xiaqiong Mao ◽  
Tao Ji ◽  
Aiguo Liu ◽  
Yunqi Weng

Abstract Background Long non-coding RNAs (lncRNAs) play important regulatory roles in the initiation and progression of various cancers. However, the biological roles and the potential mechanisms of lncRNAs in gastric cancers remain unclear. Methods The expression of SNHG22 in gastric cancer was analyzed in public databases (TCGA) and validated via qRT-PCR. SNHG22 knockdown cell lines were construced, and cell proliferation and invasion were analyzed. CHIP and luciferase reporter assays were performed to clarify the transcriptional role of ELK4. RNA pull-down followed MS and RIP assays were employed to identify the interaction between SNHG22 and EZH2. Luciferase reporter assays and RIP assays were used to confirm the regulation of SNHG22 on Notch1 by sponging miR-2003-3p. Results Knockdown of SNHG22 inhibited the proliferation and invasion ability of GC cells. Moreover, we identified that the transcriptional factor, ELK4, could promote SNHG22 expression in GC cells. In addition, using RNA pull-down followed MS assay, we found that SNHG22 directly bound to EZH2 to suppress the expression of tumor suppressor genes. At the same time, SNHG22 sponged miR-200c-3p to increase Notch1 expression. Conclusions Taken together, our findings demonstrated the role of SNHG22 on promoting proliferation and invasion of GC cells. And we revealed a new regulatory mechanism of SNHG22 in GC cells. SNHG22 is a promising lncRNA biomarker for diagnosis and prognosis and a potential target for GC treatment.


2021 ◽  
Vol 22 (7) ◽  
pp. 3531
Author(s):  
Marina Dermastia ◽  
Blaž Škrlj ◽  
Rebeka Strah ◽  
Barbara Anžič ◽  
Špela Tomaž ◽  
...  

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘Candidatus Phytoplasma solani’, but molecular interactions between the causal pathogen and its host plant are not well understood. In this work, we combined the analysis of high-throughput RNA-Seq and sRNA-Seq data with interaction network analysis for finding new cross-talks among pathways involved in infection of grapevine cv. Zweigelt with ‘Ca. P. solani’ in early and late growing seasons. While the early growing season was very dynamic at the transcriptional level in asymptomatic grapevines, the regulation at the level of small RNAs was more pronounced later in the season when symptoms developed in infected grapevines. Most differentially expressed small RNAs were associated with biotic stress. Our study also exposes the less-studied role of hormones in disease development and shows that hormonal balance was already perturbed before symptoms development in infected grapevines. Analysis at the level of communities of genes and mRNA-microRNA interaction networks revealed several new genes (e.g., expansins and cryptdin) that have not been associated with phytoplasma pathogenicity previously. These novel actors may present a new reference framework for research and diagnostics of phytoplasma diseases of grapevine.


Sign in / Sign up

Export Citation Format

Share Document