scholarly journals The association of transcription factor Prox1 with the proliferation, migration, and invasion of lung cancer

2021 ◽  
Vol 16 (1) ◽  
pp. 602-610
Author(s):  
Xinxin Hao ◽  
Wenting Luo ◽  
Xueshan Qiu

Abstract Background The current study investigates the effect of transcription factor Prox1 on the proliferation, migration, and invasion ability of lung cancer. Methods Lung cancer cell lines (A549 and H446 cells) were transfected with Prox1NAD and siRNA, respectively. Thus, the A549 and H446 cells overexpressed Prox1 after transfection of Prox1NAD plasmids, and A549 and H446 cells have low expression of Prox1 after transfection with siRNA. Reverse transcriptase quantitative PCR and western blot analyses were used to detect Prox1 mRNA and protein expression in cells. Plate clone formation experiments and MTT experiments were used to detect cell proliferation. Western blot was used to detect the expression of Rho family-related proteins in cells. Results Compared to untransfected wild-type A549 and H446 that served as blank controls, the expression level of Prox1mRNA and protein in A549 and H446 cells overexpressing Prox1 after plasmid transfection was high, while the expression level of Prox1mRNA and protein in A549 and H446 cells with low expression of Prox1 after siRNA transfection was low. With the increase of Prox1 expression, the expression of RhoA and RhoC increased, while the expression of RhoB decreased. Conclusion The finding of this study may provide a new approach for the treatment of lung cancer using targeted gene therapy.

2013 ◽  
Vol 798-799 ◽  
pp. 1018-1021
Author(s):  
Ye Xu ◽  
Ning Wang ◽  
Yan Ding ◽  
Yang Yu ◽  
Shi Bing Liu ◽  
...  

The aim of this study is to investigate the effects and mechanism of ammonium chloride (NH4Cl) on the apoptosis induced by cisplatin in human lung cancer A549 cells. MTT assay was used to detect the state of cell growth. The expressions of apoptosis related proteins were detected by Laser scanning confocal microscopy and western blot. MTT tests showed that the non-toxic dose of NH4Cl could increase the inhibition rate of A549 cells induced by cisplatin. The expression of active caspase-3 in cells treated with non-toxic dose of NH4Cl combined with cisplatin was higher than that in cells treated with cisplatin alone. Western blot analysis showed that the expressions of apoptosis related proteins were significantly increased in the combination group. These results indicate that NH4Cl can enhance the cell apoptosis induced by cisplatin in A549 cells.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huixian Zhang ◽  
Hao Zhang ◽  
Xingya Li ◽  
Siyuan Huang ◽  
Qianqian Guo ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) have been reported to exert crucial functions in regulating the progression of human cancers. However, the function and mechanism of long intergenic non-protein coding RNA 01089 (LINC01089) in non-small cell lung cancer (NSCLC) have not been revealed. Methods The expression level of LINC01089, microRNA (miRNA, miR)-152-3p and phosphatase and tensin homolog deleted onc hromosome ten (PTEN) mRNA was detected by quantitative real-time PCR (qRT-PCR). After gain-of-function and loss-of-function models were established with NSCLC cell lines, the proliferation, migration and invasion of NSCLC cells were detected by cell counting kit-8 (CCK-8) assay, scratch healing assay, Transwell assay, respectively. Dual luciferase reporter assay was employed to validate the binding relationship between miR-152-3p and LINC01089 or the 3’UTR of PTEN. Western blot was used to detect PTEN expression in NSCLC cells after LINC01089 and miR-152-3p were selectively modulated. Results LINC01089 was down-regulated in NSCLC tissues and cells. Functional experiments showed that knockdown of LINC01089 could promote the proliferation, migration and invasion of NSCLC cells, while over-expression of LINC01089 had the opposite effects. miR-152-3p was identified as a functional target for LIN01089, and miR-152-3p could reverse the function of LINC01089. Additionally, LINC01089 could up-regulate the expression level of PTEN via repressing miR-152-3p. Conclusions Down-regulation of LINC01089 promoted the progression of NSCLC through regulating miR-152-3p/PTEN axis.


2020 ◽  
Vol 15 (1) ◽  
pp. 522-531
Author(s):  
Jin-Liang Li ◽  
Zai-Qiu Wang ◽  
Xiao-Li Sun

AbstractObjectiveThis study was designed to explore the biological significance of myosin light chain 6B (MYL6B) in rectal adenocarcinoma.MethodsProfiles on the Oncomine dataset, GEPIA website, and UALCAN-TCGA database were searched to assess the MYL6B expression level in rectal adenocarcinoma tissues and normal tissues. After MYL6B knockdown using siRNA strategy, cell counting kit-8 (CCK-8) and transwell assays were conducted to measure cell proliferation, migration and invasion, respectively. Flow cytometry analysis was conducted to assess cell apoptosis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot were performed to detect the expression level of mRNAs and proteins.ResultsThe data showed that overexpression of MYL6B was observed in rectal adenocarcinoma tissues and correlated with a poor prognosis of patients. Functional in vitro experiments revealed that MYL6B knockdown could inhibit proliferation, migration, and invasion of rectal adenocarcinoma cells, while promote cell apoptosis. Moreover, western blot analysis suggested that increased expression of E-cadherin and decreased expression of N-cadherin and Vimentin were induced by si-MYL6B.ConclusionIn summary, this study elaborated on the promoting effect of MYL6B in rectal adenocarcinoma progression, thus providing novel insight for strategies of clinical diagnosis and drug application in the future clinical study.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuxin Qi ◽  
Wenping Yang ◽  
Shuang Liu ◽  
Fanjie Han ◽  
Haibin Wang ◽  
...  

Abstract Background Lung cancer is one of the important health threats worldwide, of which 5-year survival rate is less than 15%. Non-small-cell lung cancer (NSCLC) accounts for about 80% of all lung cancer with high metastasis and mortality. Methods Cisplatin loaded multiwalled carbon nanotubes (Pt-MWNTS) were synthesized and used to evaluate the anticancer effect in our study. The NSCLC cell lines A549 (cisplatin sensitive) and A549/DDP (cisplatin resistant) were used in our in vitro assays. MTT was used to determine Cancer cells viability and invasion were measured by MTT assay and Transwell assay, respectively. Apoptosis and epithelial-mesenchymal transition related marker proteins were measured by western blot. The in vivo anti-cancer effect of Pt-MWNTs were performed in male BALB/c nude mice (4-week old). Results Pt-MWNTS were synthesized and characterized by X-ray diffraction, Raman, FT-IR spectroscopy and scan electron microscopy. No significant cytotoxicity of MWNTS was detected in both A549/DDP and A549 cell lines. However, Pt-MWNTS showed a stronger inhibition effect on cell growth than free cisplatin, especially on A549/DDP. We found Pt-MWNTS showed higher intracellular accumulation of cisplatin in A549/DDP cells than free cisplatin and resulted in enhanced the percent of apoptotic cells. Western blot showed that application of Pt-MWNTS can significantly upregulate the expression level of Bax, Bim, Bid, Caspase-3 and Caspase-9 while downregulate the expression level of Bcl-2, compared with free cisplatin. Moreover, the expression level of mesenchymal markers like Vimentin and N-cadherin was more efficiently reduced by Pt-MWNTS treatment in A549/DDP cells than free cisplatin. In vivo study in nude mice proved that Pt-MWNTS more effectively inhibited tumorigenesis compared with cisplatin, although both of them had no significant effect on body weight. Conclusion Pt-MWNT reverses the drug resistance in the A549/DDP cell line, underlying its possibility of treating NSCLC with cisplatin resistance.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hong Chen ◽  
Lu Xu ◽  
Zhi-li Shan ◽  
Shu Chen ◽  
Hao Hu

Abstract Background Glutathione Peroxidase 8 (GPX8) as a member of the glutathione peroxidase (GPx) family plays an important role in anti-oxidation. Besides, dysregulation of GPX8 has been found in gastric cancer, but its detailed molecular mechanism in gastric cancer has not been reported. Methods Our study detected the expression of GPX8 in gastric cancer tissues and cell lines using immunohistochemistry (IHC), western blot and qRT-PCR, and determined the effect of GPX8 on gastric cancer cells using CCK-8, colony formation, transwell migration and invasion assays. Besides, the effect of GPX8 on the Wnt signaling pathway was determined by western blot. Furthermore, the transcription factor of GPX8 was identified by bioinformatics methods, dual luciferase reporter and chromatin immunoprecipitation (CHIP) assays. In addition, the effect of GPX8 on tumor formation was measured by IHC and western blot. Results The over-expression of GPX8 was observed in gastric cancer tissues and cells, which facilitated the proliferation, migration and invasion of gastric cancer cells as well as the tumor growth. GPX8 knockdown effectively inhibited the growth of gastric cancer cells and tumors. Moreover, GPX8 could activate the Wnt signaling pathway to promote the cellular proliferation, migration and invasion through. Furthermore, FOXC1 was identified as a transcription factor of GPX8 and mediated GPX8 expression to affect cell development processes. Conclusions These findings contribute to understanding the molecular mechanism of GPX8 in gastric cancer. Additionally, GPX8 can be a potential biomarker for gastric cancer therapy.


2021 ◽  
Author(s):  
Heng Xiao ◽  
Jing Long ◽  
Xiang Chen ◽  
Mi-Duo Tan

Abstract Background: Breast cancer is a commonplace carcinoma in females. Recurrence and metastasis are the main problems affecting the survival rate of patients. The fundamental reason is the lack of understanding of the mechanism of breast cancer metastasis. This study aims to deliberate on the efficaciousness of Nuclear protein 1 (NUPR1)-mediated autophagy on breast cancer metastasis.Methods: The proliferation, migration and invasion ability of breast cancer cells were appraised by CCK-8, wound healing, and colony formation, as well as transwell assay. The relationship between NUPR1 and Translocation factor E3 (TFE3) was appraised by qPCR, western blot and ChIP. Migration-invasion-related proteins and autophagy-related proteins were appraised by western blot. The effects of NUPR1 on malignancy formation and metastasis were studied in vivo.Results: NUPR1 was upregulated in breast cancer cells and tissues. NUPR1 knockdown restrained the proliferation, migration and invasion of ZR-75-30 cells. Moreover, NUPR1 knockdown restrained malignancy formation and metastasis in vivo. Mechanically, NUPR1 promoted autophagy through activation of TFE3 transcription, thereby regulating the process of breast cancer metastasis.Conclusion: This paper elucidates the molecular mechanism of NUPR1 promoting breast cancer metastasis by activating autophagy through TFE3 signaling pathway, which provided biological basis for intervention of blocking distant metastasis.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yang He ◽  
Peng Gong ◽  
Sitong Wang ◽  
Qing Xu ◽  
Jianhua Chen

Abstract Background Colon cancer is a serious malignant tumor. It has been reported that paired-like homeodomain transcription factor 2 (PITX2) can promote the progression of several types of cancer via regulating the Wnt/β-catenin pathway. It has also been demonstrated that high levels of long non-coding RNA (lncRNA) gastric carcinoma high expressed transcript 1 (GHET1) can also promote the development of cervical cancer via activating the Wnt/β-catenin pathway. However, whether PITX2 can affect the development of colon cancer via regulating the expression of lncRNA GHET1 remains unclear. Results The results demonstrated that PITX2 knockdown attenuated the proliferation, migration and invasion abilities of colon cancer cells. Additionally, PITX2 promoted the expression of lncRNA GHET1 via binding to its promoter. Overexpression of lncRNA GHET1 induced the expression of Wnt/β-catenin signaling-related proteins, cyclin D1, c-Myc and MMP-7. Furthermore, lncRNA GHET1 overexpression abrogated the PITX2 silencing-mediated decreased proliferation, migration and invasion abilities of colon cancer cells. Conclusion The findings of the present study suggested that PITX2 could enhance the proliferation, migration and invasion abilities of colon cancer cells via upregulating lncRNA GHET1 and activating the Wnt/β-catenin pathway.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Yu Li ◽  
Guangle Qin ◽  
Jinyun Du ◽  
Peng Yue ◽  
Yanling Zhang ◽  
...  

Circular RNA LDLRAD3 behaved as an oncogene in several malignancies, but its effects in NSCLC and the involvement of downstream molecules and activation of signaling pathways had not been fully reported. We planned to explore how LDLRAD3 facilitated the malignancy of NSCLC. QRT-PCR was performed to evaluate the expression levels of LDLRAD3, miR-20a-5p, and SLC7A5 in NSCLC tissues and cells. si-LDLRAD3 was transfected to A549 and H1299 cells to knock down intrinsic LDLRAD3 to determine its oncogenic roles. CCK-8 assay and transwell assay were executed to assess cell proliferative, migrative, and invasive abilities. Dual-luciferase reporter (DLR) assay was manipulated to verify the ENCORI-predicted relationships between LDLRAD3 and miR-20a-5p and between miR-20a-5p and SLC7A5. Western blot, immunofluorescent assay, and immunohistochemistry were applied to explore the expression levels of SLC7A5, and the levels of mTORC1 pathway-related proteins were evaluated using western blot. Rescue experiments were conducted by transfecting si-LDLRAD3, miR-20a-5p inhibitor, and si-SLC7A5 to explore the influence of the LDLRAD3-miR-20a-5p-SLC7A5 axis on the malignant behaviors of NSCLC cells. The expression levels of LDLRAD3 and SLC7A5 were boosted, whereas miR-20a-5p was impeded in NSCLC tissues and cell lines. Knockdown of LDLRAD3 weakened the proliferation, migration, and invasion of A549 and H1299 cells. LDLRAD3 was verified to sponge miR-20a-5p and miR-20a-5p targeted SLC7A5. LDLRAD3 activated the mTORC1 singling pathway via the miR-20a-5p-SLC7A5 axis to strengthen the malignant properties of A549 and H1299 cells. We concluded that LDLRAD3 exerted oncogenic effects via the miR-20a-5p-SLC7A5 axis to activate the mTORC1 signaling pathway in NSCLC. Our findings enlightened that LDLRAD3 could become a potential therapeutic target in the treatment and management of NSCLC.


2014 ◽  
Vol 32 (3_suppl) ◽  
pp. 56-56
Author(s):  
Xu Yanjun ◽  
Zhou Tianhua ◽  
Si Jianmin ◽  
Zhuo Wei

56 Background: Migration and invasion of cancer cells are essential process during cancer metastatic procession. In gastric cancer, cells invasion into the surrounding tissue is a crucial early step. However, the mechanisms have not been fully understood. MicroRNAs, which are a class of small single-stranded non-coding RNA, participate in the malignant progressions of cancer, including metastasis. We study the association between specific dysregulated miRNA and specific metastasis step of gastric cancer, which will provide insights into the potential mechanisms of gastric cancer cells migration, invasion and metastasis. Methods: The expression of miR-375 was assayed using the quantitative real-time PCR analysis. Scratch-wound healing assay, Transwell migration and invasion assay were conducted to study the migration and invasion abilities of cells. Animal experiment was also conducted to examine the effect on liver and lung metastases by overexpression of miR-375. Luciferase assay was conducted to study the association between Snail and miR-375. Results: MiR-375 is downregulated in gastric cancer cells with greater migration and invasion abilities. The expression level of miR-375 is decreased in gastric cancer tissues from metastasis-positive patients compared with that from metastasis-free patients. Overexpression of miR-375 inhibits the migration and invasion abilities of gastric cancer cells. JAK2, which may be a target gene of miR-375, could reverses miR-375 induced inhibition of gastric cancer cells migration and invasion. Liver metastasis was not detected in mice injected with miR-375 overexpressed cells but was apparent in mice injected with cells which were transfected with control vector. The transcription factor Snail, which binds directly to the putative promoter of miR-375, could reduce the expression level of miR-375 significantly. A distinct inverse correlation was found between miR-375 expression and Snail mRNA level. Conclusions: These findings demonstrate that tumor suppressor miR-375, whose expression is directly regulated by the transcription factor Snail, inhibits gastric cancer cells migration, invasion and metastasis by targeting an important protein JAK2.


Sign in / Sign up

Export Citation Format

Share Document