scholarly journals Production and characterization of thermoplastic elastomer foams based on the styrene–ethylene–butylene–styrene (SEBS) rubber and thermoplastic material

2021 ◽  
Vol 19 (1) ◽  
pp. 929-937
Author(s):  
Ceren Kıroğlu ◽  
Nilgün Kızılcan

Abstract Thermoplastic elastomer foams based on styrene–ethylene–butylene–styrene (SEBS)/polypropylene (PP) were produced by using different processing techniques such as extrusion and injection molding to achieve optimized mechanical and thermal properties in terms of strength, elongation, and damping capability. Foaming is a method of introducing gas-filled cells into the material and it is considered an effective way to meet the requirements for higher impact resistance with low density and relatively low hardness. In this study, microspheres were used as a foaming agent and were introduced to the system by using an injection molding machine. They were used in different percentages and ranged from 1 and 3%. They decrease the density of the product thereby lowering the weight and cost. Besides improving damping abilities and decreasing the density, inorganic fillers such as talc, silica, and calcium carbonate were used to increase the mechanical strength, and their effectivity was also investigated. It was observed that a higher amount of foaming agent lowered the density by creating voids in the blend, as expected. The introduction of fillers increases the mechanical properties; however, the density had a negative effect even in the presence of foaming agents. About 3% density reduction can be achieved in the presence of talc and a foaming agent whereas the other fillers had an opposite effect on the density. Accordingly, the impact resistance was affected negatively because of the stiffness of the filler materials, and the highest Izod impact value was 50.2 kJ/m2. The elastic modulus values for foamed samples and filled with CaCO3, talc, and silica were 808, 681, and 552 MPa respectively. Combining foaming and thermoplastic elastomers (TPEs) offers a wide variety of possibilities to new and existing applications. In addition to low hardness and density, foaming provides better damping ability thanks to its morphological structure.

2021 ◽  
Vol 5 (9) ◽  
pp. 232
Author(s):  
Samir Kasmi ◽  
Julien Cayuela ◽  
Bertrand De Backer ◽  
Eric Labbé ◽  
Sébastien Alix

The standard polylactic acid (PLA), as a biodegradable thermoplastic polymer, is commonly used in various industrial sectors, food, and medical fields. Unfortunately, it is characterized by a low elongation at break and low impact energy. In this study, a thermoplastic copolyester elastomer (TPCE) was added at different weight ratios to improve the impact resistance of PLA. DSC analysis revealed that the two polymers were immiscible. A good balance of impact resistance and rigidity was reached using the formulation that was composed of 80% PLA and 20% TPCE, with an elongation at break of 155% compared to 4% for neat PLA. This new formulation was selected to be tested in a fused filament fabrication process. The influence of the nozzle and bed temperatures as printing parameters on the mechanical and thermal properties was explored. Better impact resistance was observed with the increase in the two thermal printing parameters. The crystallinity degree was not influenced by the variation in the nozzle temperature. However, it was increased at higher bed temperatures. Tomographic observations showed an anisotropic distribution of the porosity, where it was mostly present between the adjacent printed filaments and it was reduced with the increase in the nozzle and bed temperatures.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 360 ◽  
Author(s):  
Hyun Kim ◽  
Joo Sohn ◽  
Youngjae Ryu ◽  
Shin Kim ◽  
Sung Cha

This study analyzes the fundamental principles and characteristics of the microcellular foaming process (MCP) to minimize warpage in glass fiber reinforced polymer (GFRP), which is typically worse than that of a solid polymer. In order to confirm the tendency for warpage and the improvement of this phenomenon according to the glass fiber content (GFC), two factors associated with the reduction of the shrinkage difference and the non-directionalized fiber orientation were set as variables. The shrinkage was measured in the flow direction and transverse direction, and it was confirmed that the shrinkage difference between these two directions is the cause of warpage of GFRP specimens. In addition, by applying the MCP to injection molding, it was confirmed that warpage was improved by reducing the shrinkage difference. To further confirm these results, the effects of cell formation on shrinkage and fiber orientation were investigated using scanning electron microscopy, micro-CT observation, and cell morphology analysis. The micro-CT observations revealed that the fiber orientation was non-directional for the MCP. Moreover, it was determined that the mechanical and thermal properties were improved, based on measurements of the impact strength, tensile strength, flexural strength, and deflection temperature for the MCP.


2014 ◽  
Vol 936 ◽  
pp. 3-7
Author(s):  
Shi Hui Chen ◽  
Jun Gang Gao ◽  
Hong Zhe Han ◽  
Chao Wang

In order to modify the properties of the epoxy composites, an alkali catalyzed biphenyldiol formaldehyde resin (BPFR) was synthesized and used to cure epoxy resin (ER). γ-Glycidoxypropyl trimethoxysilane (KH-560) was used as a reinforcer of the composites. Laminates of the BPFR/ER fiberglass reinforced composites with different (KH-560) contents were prepared. The influence of the KH-560 content on the glass transition temperature (Tg) and thermal degradation properties of the composites was researched by dynamic mechanical analyzer (DMA) and thermogravimetric analysis (TG). The mechanical, electrical properties of the composites were determined. The results showed that the interfacial bonding strength between resin matrix and fiberglass can be efficiently improved with the presence of KH-560. When the ratio of BPFR and ER is 3 : 7, the content of KH-560 is 5 ~7 wt%, the impact resistance of the fiberglass reinforced composites is 61.35~78.59 kJ/m2, the tensile resistance is 150.37~162.54 MPa, which are all 30 % higher than that of no added; The dielectric constant ε and dielectric loss tanδ of the composites is between 0.50~0.68 and between 0.008~0.01, respectively.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 152 ◽  
Author(s):  
Jong-Ho Back ◽  
Dooyoung Baek ◽  
Jae-Ho Shin ◽  
Seong-Wook Jang ◽  
Hyun-Joong Kim ◽  
...  

Epoxy foam adhesives are widely used for weight reduction, watertight property, and mechanical reinforcement effects. However, epoxy foam adhesives have poor impact resistance at higher expansion ratios. Hence, we prepared an epoxy composite foam adhesive with core–shell rubber (CSR) particles to improve the impact resistance and applied it to automotive structural adhesives. The curing behavior and pore structure were characterized by differential scanning calorimetry (DSC) and X-ray computed tomography (CT), respectively, and impact wedge–peel tests were conducted to quantitatively evaluate the resistance to cleavage of the CSR/epoxy composite foam adhesives under impact. At 5 and 10 phr CSR contents, the pore size and expansion ratio increased sufficiently due to the decrease in curing rate. However, at 20 phr CSR content, the pore size decreased, which might be due to the steric hindrance effect of the CSR particles. Notably, at 0 and 0.1 phr foaming agent contents, the resistance to cleavage of the adhesives under the impact wedge–peel condition significantly improved with increasing CSR content. Thus, the CSR/epoxy composite foam adhesive containing 0.1 phr foaming agent and 20 phr CSR particles showed high impact resistance (EC = 34,000 mJ/cm2) and sufficient expansion ratio (~148%).


2019 ◽  
pp. 089270571987667 ◽  
Author(s):  
Carlos Ivan Ribeiro de Oliveira ◽  
Marisa Cristina Guimarães Rocha ◽  
Joaquim Teixeira de Assis ◽  
Ana Lúcia Nazareth da Silva

The aim of this study is to evaluate the effect of some experimental variables such as the content of styrene–ethylene–butylene–styrene (SEBS) and talc, processing conditions and mixing protocol on the properties of polypropylene (PP). To achieve this objective, PP/SEBS blends and PP/SEBS/talc composites were processed in a corotating twin-screw extruder. A masterbatch of PP/talc was prepared before the extrusion of PP/SEBS/talc composites. The morphology of blends and composites was evaluated by scanning electron microscopy, which revealed the dispersion of small rubber droplets in the PP matrix. Moreover, the micrographs also showed that SEBS and talc particles were uniformly dispersed and distributed in the polymer matrix. Results of thermal properties showed that talc had a nucleating effect, which promoted the increase of both PP crystallization temperature and crystallinity degree. The incorporation of talc in PP/SEBS blends led to an expressive increase in the impact resistance by 70% as compared with the reference blend: PP/SEBS 80/20% (w/w). This result reveals that although the PP/SEBS/talc composites showed a separated morphology, the good dispersion and distribution of this mineral filler in the polymers contributed to avoid crack propagation and increase the impact properties. The tensile properties in the elastic region were not significantly affected.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 163
Author(s):  
Akihiro Matsuda ◽  
Shigeru Kawahara

In this paper, mechanical properties of thermoplastic elastomers were investigated to expand the applicability of thermoplastic elastomers to the impact load reduction for the sports equipment. The thermoplastic elastomers show both thermoplastic and elastomeric properties. These are expected to apply to the impact load reduction in sports equipment due to good processability and less-smell. In this study, thermoplastic elastomers were applied for monotonic and cyclic tensile loading tests. The thermoplastic elastomer (TPE) materials in this study were newly developed for the specific purpose of impact load reduction. The nonlinear hyperelastic model considering the viscosity and damage model was applied to the tensile loading test results. finite element analysis (FEA) results of TPE specimens with periodic geometric shapes to reduce impact load were investigated.


2017 ◽  
Vol 50 (6) ◽  
pp. 537-553 ◽  
Author(s):  
Eren Simsek ◽  
Oguzhan Oguz ◽  
Kaan Bilge ◽  
Mehmet Kerem Citak ◽  
Oguzhan Colak ◽  
...  

Polypropylene (PP)–waste elastomer blends are particularly attractive as an economical way of producing sustainable materials, relieving the stress on the environment. Although PP is a commodity thermoplastic finding employment in various applications, its relatively low impact strength might be a significant factor limiting the variety of uses in many industries. Extensive consumption of thermoset elastomers has been a worldwide waste disposal problem. Here, we describe a facile, economical method for reuse of waste ethylene-propylene-diene monomer (EPDM) rubber to produce impact resistant blend materials with the PP via a high-shear thermokinetic mixer. In these blends, waste EPDM was used in various concentrations ranging from 20 to 80 wt%, as the remaining part, PP acts as a carrier matrix or a physical binder depending on the concentration in the blend. Briefly, fivefold increase was achieved in the impact resistance of PP by the addition of 60 wt% EPDM waste. The blend with 80 wt% waste EPDM shows characteristics similar to a thermoplastic elastomer. The conclusion of the study is that the blending method is quite effective to produce high-performance blend materials consisting of high concentrations of thermoset waste which addresses the worldwide disposal problem of waste thermoset rubbers.


1987 ◽  
Vol 60 (3) ◽  
pp. 83-117 ◽  
Author(s):  
Norman R. Legge

Abstract It is a great pleasure to return to Montreal to receive the Charles Goodyear Medal at this joint meeting of the American Chemical Society, Rubber Division, and the Rubber Chemistry Division, Chemical Institute of Canada. This occasion has given me a delightful opportunity to renew old friendships in both organizations and to visit again my graduate school at McGill. First of all, I thank the Awards Committee and the Executive Committee of the Rubber Division for electing me to this high honor which I share with my many collaborators who were with me during those exciting years, and with the Shell Companies. The subject of the lecture is “Thermoplastic Elastomers,” specifically the triblock copolymers based on styrene and dienes, or hydrogenated dienes. Previously I have used the subtitle, “A Successful Innovation,” where I have defined “innovation” as the successful commercialization of a new technology, process, or product. In this lecture, I shall discuss the background of the innovation, the impact of it upon the thermoplastic elastomer field, and some of the early history of thermoplastic elastomers, which I believe you will find interesting.


2021 ◽  
Author(s):  
Tianran Chen

In this work, TLCP and GF reinforced PP have been recycled and TLCP/PP demonstrates superior recyclability over GF/PP due to the generation of fibrils during mold filling steps. The fiber shortening has a major impact on mechanical properties of GF/PP, which is induced by repeated injection molding and grinding. The thermal properties of TLCP/PP and GF/PP have been analyzed by DSC. The results show that injection molding and grinding does not impact the glass transition temperature, melting temperature and crystallinity of recycled composites.In continuation of this work, the influence of mechanical recycling on rheological, thermal stability and thermo-mechanical properties will be analyzed in order to gain full understanding about the impact of recycling on the various properties of TLCP and GF composites.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1781 ◽  
Author(s):  
Payal Bakshi ◽  
Asokan Pappu ◽  
Ravi Patidar ◽  
Manoj Kumar Gupta ◽  
Vijay Kumar Thakur

Marble waste is generated by marble processing units in large quantities and dumped onto open land areas. This creates environmental problems by contaminating soil, water, and air with adverse health effects on all the living organisms. In this work, we report on understanding the use of calcium-rich marble waste particulates (MPs) as economic reinforcement in recyclable polypropylene (PP) to prepare sustainable composites via the injection molding method. The process was optimized to make lightweight and high-strength thermally insulated sustainable composites. Physicochemical, mineralogical, and microscopic characterization of the processed marble waste particulates were carried out in detail. Composite samples were subsequently prepared via the injection molding technique with different filler concentrations (0%, 20%, 40%, 60%, and 80%) on weight fraction at temperatures of 160, 180, and 200 °C. Detailed analysis of the mechanical and thermal properties of the fabricated composites was carried out. The composites showed a density varying from 0.96 to 1.27 g/cm3, while the water absorption capacity was very low at 0.006%–0.034%. Marble waste particulates were found to considerably increase the tensile, as well as flexural, strength of the sustainable composites, which varied from 22.06 to 30.65 MPa and 43.27 to 58.11MPa, respectively, for the molding temperature of 160 °C. The impact strength of the sustainable composites was found to surge with the increment in filler concentration, and the maximum impact strength was recorded as 1.66 kJ/m2with 20% particulates reinforcement at a molding temperature of 200 °C. The thermal conductivity of the particulates-reinforced sustainable composites was as low as 0.23 Wm−1K−1 at a 200 °C molding temperature with 20% and 40% filler concentrations, and the maximum thermal conductivity was 0.48 Wm−1K−1 at a 160 °C molding temperature with 80% filler concentration. Our findings have shown a technically feasible option for manufacturing a lightweight composite with better mechanical and thermal properties using marble waste particulates as a potential civil infrastructural material.


Sign in / Sign up

Export Citation Format

Share Document