Evaluation of mechanical, morphological and thermal properties of waste rubber tire powder/LLDPE blends

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Zhen Xiu Zhang ◽  
Shu Ling Zhang ◽  
Jin Kuk Kim

AbstractPolymer blends of WRT (waste rubber tire) powder/LLDPE (linear low density polyethylene) have been attempted to prepare thermoplastic elastomers (TPEs). The effects of maleic anhydride-grafted styrene-ethylene-butylene-styrene (SEBS-g-MA) and dicumyl peroxide (DCP) on mechanical, morphological and thermal properties of the blends were evaluated using universal testing machine (UTM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA). It was found that combination of SEBS-g-MA and DCP could better enhance the mechanical properties of WRT powder/LLDPE blends compared to SEBS-g-MA or DCP alone. Better compatibility between WRT powder and LLDPE was responsible for the enhancement of mechanical properties, as supported by SEM. The incorporation of SEBS-g-MA and DCP with WRT powder/LLDPE blends reduced the crystallizable perfectness of the blends, but slightly increased the thermal stability of the blends, as shown from DSC and TGA results

2012 ◽  
Vol 624 ◽  
pp. 264-268 ◽  
Author(s):  
Duo You Zhang ◽  
Peng Liu ◽  
Chun Fa Ouyoung ◽  
Qun Gao ◽  
Kang Sheng Zheng ◽  
...  

PNA012 is a new nucleating agent on polybutylene terephthalate. The effect of different dosage of PNA012 on crystallization and mechanical properties were investigated by means of differential scanning calorimetry, universal testing machine, melt flow indexer and vicat softening testing machine. It was revealed that the PNA012 could substantially accelerate the crystallization of PBT. Compared with the pure PBT,the crystallization temperature of PBT/PNA012 rises from 196.3 °C to 199.7 °C and crystallization degree from 34.2% to 39.9%. The tensile Strength of PBT/PNA012 is increased 9.7%. The Bending Strength has a rise of 9.3% and the heat distortion temperatures of PBT/PNA012 is increased from 115.07°C to 125.94°C.


2020 ◽  
Vol 22 (4) ◽  
pp. 10-16
Author(s):  
Gvlmira Hasan ◽  
Dilhumar Musajan ◽  
Gong-bo Hou ◽  
Mingyu He ◽  
Ying Li ◽  
...  

AbstractLignin was used to study the mechanical properties and thermal stability of polymers. The lignin was blended with three kinds of polymers, and the addition of lignin was 0.5 wt%. Under the condition of thermal oxidation, the thermal stability of lignin/polymer samples varies with the structure of lignin. The effects of lignin on the mechanical properties and thermal stability of the polymers were investigated by oxidation induction time (OIT), rheological properties, mechanical properties and differential scanning calorimetry (DSC). The results show that the effect of lignin on the thermal properties of polymer samples is 2~3°C. It can be inferred that lignin can effectively improve the interaction between polymer molecular chain segments, and improve the crystallization rate and rigidity to a certain extent, so it can be seen that lignin has good compatibility and thermal stability.


2020 ◽  
Vol 10 (3) ◽  
pp. 5423-5428

This study deals with the enhancement of physical and mechanical properties of oil palm empty fruit bunch fibers (OPEFB) for new fire resistant material application. Two flame retardants (organic and inorganic) were applied to improve the fire resistant capability of the produced fibers. The fire resistant capability was tested according to the ASTM D6413-99 method. Mechanical properties were characterized using a universal testing machine and the differential scanning calorimetry (DSC) was performed to investigate their thermal behaviors. The surface morphology of the produced fibers was observed using scanning electron microscopy (SEM). This study found that the fire resistant capability of the fibers can be improved by the addition of flame retardants. Thermal properties of the treated fibers can be enhanced compared to the untreated fibers. Mechanical properties inspection revealed that increasing the flame retardant concentration (0.5 to 1 M) can improve their tensile strength but started to decrease at a higher concentration (3 M). In general, the present work successfully performed the enhancement of non-woven OPEFB properties for foreseeable fire resistant material applications.


2016 ◽  
Vol 703 ◽  
pp. 165-171 ◽  
Author(s):  
Kwan Ho Seo ◽  
Gi Myeong Nam ◽  
Dong Gug Kang ◽  
Gi Hong Kim ◽  
Do Young Kim ◽  
...  

In this study, mechanical properties, oil resistance of Nitrile Butadiene Rubber (NBR) as material of an automotive were investigated at low temperature conditions. In order to find the optimum formulation used various grades of NBR with different contents of Acrylonitrile (ACN) such as NT1846F, DN407, B7150, B6240 and N215SL. The mechanical properties, oil and low temperature resistance of NBR were measured using moving die rheometer, durometer, universal testing machine, differential scanning calorimetry, and Gehman tester. The hardness was increased with an increased ACN contents. The low temperature resistance, and degree of swelling were increased that decreased ACN contents have lower Tg, lower value of Gehaman test.


2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1303
Author(s):  
Michael Seidenstuecker ◽  
Thomas Schmeichel ◽  
Lucas Ritschl ◽  
Johannes Vinke ◽  
Pia Schilling ◽  
...  

This work aimed to determine the influence of two hydrogels (alginate, alginate-di-aldehyde (ADA)/gelatin) on the mechanical strength of microporous ceramics, which have been loaded with these hydrogels. For this purpose, the compressive strength was determined using a Zwick Z005 universal testing machine. In addition, the degradation behavior according to ISO EN 10993-14 in TRIS buffer pH 5.0 and pH 7.4 over 60 days was determined, and its effects on the compressive strength were investigated. The loading was carried out by means of a flow-chamber. The weight of the samples (manufacturer: Robert Mathys Foundation (RMS) and Curasan) in TRIS solutions pH 5 and pH 7 increased within 4 h (mean 48 ± 32 mg) and then remained constant over the experimental period of 60 days. The determination surface roughness showed a decrease in the value for the ceramics incubated in TRIS compared to the untreated ceramics. In addition, an increase in protein concentration in solution was determined for ADA gelatin-loaded ceramics. The macroporous Curasan ceramic exhibited a maximum failure load of 29 ± 9.0 N, whereas the value for the microporous RMS ceramic was 931 ± 223 N. Filling the RMS ceramic with ADA gelatin increased the maximum failure load to 1114 ± 300 N. The Curasan ceramics were too fragile for loading. The maximum failure load decreased for the RMS ceramics to 686.55 ± 170 N by incubation in TRIS pH 7.4 and 651 ± 287 N at pH 5.0.


2018 ◽  
Vol 33 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Patrycja Bazan ◽  
Stanisław Kuciel ◽  
Mariola Sądej

The work has evaluated the possibility of the potential reinforcing of poly(oxymethylene) (POM) by basalt fibers (BFs) and influence of BFs addition on thermal properties. Two types of composites were produced by injection molding. There were 20 and 40 wt% long BFs content with an average length of 1 mm. The samples were made without using a compatibilizer. In the experimental part, the basic mechanical properties (tensile strength, modulus of elasticity, strain at break, flexural modulus, flexural strength, and deflection at 3.5% strain) of composites based on POM were determined. Tensile properties were also evaluated at three temperatures −20°C, 20°C, and 80°C. The density and Charpy impact of the produced composites were also examined. The influence of water absorption on mechanical properties was investigated. Thermal properties were conducted by the differential scanning calorimetry, thermal gravimetric analysis, and fourier transform infrared (FTIR)-attenuation total reflection (ATR) spectroscopy analysis. In order to make reference to the effects of reinforcement and determine the structure characteristics, scanning electron microscopy images were taken. The addition of 20 and 40 wt% by weight of fibers increases the strength and the stiffness of such composites by more than 30–70% in the range scale of temperature. Manufactured composites show higher thermal and dimensional stability in relation to neat POM.


2019 ◽  
Vol 7 (5) ◽  
pp. 311-320
Author(s):  
Umurhurhu Benjamin ◽  
Uguru Hilary

The mechanical properties of eggplant fruit (cv. Bello) harvested at physiological maturity stage were evaluated in three storage periods (3d, 6d and 9d). These mechanical parameters (rupture force, rupture energy and deformation at rupture point) were measured under quasi compression loading, using the Universal Testing Machine (Testometric model). The fruit’s toughness and rupture power were calculated from the data obtained from the rupture energy and deformation at rupture point. Results obtained showed that mechanical properties of the Bello eggplant fruit exhibited strong dependence on the storage period. The results showed that as the Bello fruit stored longer, its rupture force and rupture energy decreased from 812 N to 411 N, and 5.58 Nm to 3.11 Nm respectively. While the rupture power decreased from 1.095 W to 0.353 W. On the contrary, the toughness and deformation at rupture increased from 0.270 mJ/mm3 to 0.403 mJ/mm3, and 16.99 mm to 25.22mm respectively during the 9 days storage period. The knowledge of the mechanical properties of fruits is important for their harvest and post-harvest operations, therefore, information obtained from this study will be useful in the design and development of machines for the mechanization of eggplant production.


Sign in / Sign up

Export Citation Format

Share Document