Borocarbide coarsening and the effect of borocarbide particle size on Charpy V-notch impact properties of medium-carbon boron-containing steel

Author(s):  
João Paulo Gomes Antunes Costa ◽  
Miguel Justino Ribeiro Barboza ◽  
Helio Goldenstein ◽  
André Luiz Vasconcellos da Costa e Silva ◽  
Carlos Angelo Nunes

Abstract Boron-added steel has been used in several automotive components in which the energy absorbed in impact testing is an important requirement. Previous thermodynamic studies have shown that boron addition promotes significant change in equilibrium phases, increasing the volume fraction of precipitated phases, mostly due to increased carbide stability and formation of borocarbides. As volume fraction, size and distribution of precipitates influence the absorbed energy in impact testing of steels, it is important to study M23(B,C)6 borocarbide precipitation and coarsening kinetics and its effects on Charpy V-notch absorbed energy of boron steels. In the present work, borocarbide coarsening kinetics were evaluated using optical microscopy in samples heat-treated at 880 0C for different times. The borocarbide coarsening kinetics data suggest that growth is controlled by an interfacial reaction mechanism. The Charpy V-notch absorbed energy decreases with increasing borocarbide section size and the embrittlement was successfully described by an empirical equation.

Author(s):  
Praveen Singh ◽  
Satnam Singh

The aim of this work is to study the effect of various quenching media on the microstructural evolution and properties enhancement of AISI 4135 alloy steel. The formation of dual microstructures and their effect on mechanical and wear properties are investigated in this work. An attempt is made to correlate the microstructure-properties relation based on the quenching method used. Steel is heated above the austenitic temperatures (A3) and subsequently cooled down through various quenching media to obtain the variations in microstructures and related properties. The heat treated samples were investigated for microstructural evolution through optical microscopy and scanning electron microscope; mechanical characterization through microhardness study, tensile testing and impact testing; and wear characterization through pin on disc tribometer. It was observed that increased cooling rates increased the volume fraction of martensitic structures whereas oil quenching enhanced fine pearlite and bainite formation. The air cooling led to the formation of fine pearlite along with ferrite structures. Strength, hardness and wear resistance is favored with martensite formation but toughness decreases.


2006 ◽  
Vol 519-521 ◽  
pp. 1727-1732 ◽  
Author(s):  
Daryoush Emadi ◽  
Robert Mackay ◽  
L.V. Whiting ◽  
Jerry Sokolowski ◽  
Mahi Sahoo

The potential use of an Al-9Si-1Cu alloy (W328 alloy) as a replacement for W319 alloy in engine blocks was investigated.. The ambient mechanical properties (tensile, hardness and fatigue) of sand and permanent mould cast test bars along with bars machined from a sand cast automotive component were studied. The tensile properties were evaluated in as-cast and T6 heat-treated conditions. The effects of Fe and Mn on properties were also investigated. The castings in W328 alloy exhibit lower porosity than W319 alloy, which is attributed to the smaller solidification range and feeding distance and larger volume fraction of the eutectic phase. Higher iron levels increased the level of intermetallics and reduced properties. The addition of Mn did not offset the effect of higher iron levels. The W328 alloy offers some advantages over the 319 alloy and is a potential candidate for production of automotive components such as engine blocks and cylinder heads.


MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3854
Author(s):  
Hugo Martínez Sánchez ◽  
George Hadjipanayis ◽  
Germán Antonio Pérez Alcázar ◽  
Ligia Edith Zamora Alfonso ◽  
Juan Sebastián Trujillo Hernández

In this work, the mechanochemical synthesis method was used for the first time to produce powders of the nanocrystalline Nd1.1Fe10CoTi compound from Nd2O3, Fe2O3, Co and TiO2. High-energy-milled powders were heat treated at 1000 °C for 10 min to obtain the ThMn12-type structure. Volume fraction of the 1:12 phase was found to be as high as 95.7% with 4.3% of a bcc phase also present. The nitrogenation process of the sample was carried out at 350 °C during 3, 6, 9 and 12 h using a static pressure of 80 kPa of N2. The magnetic properties Mr, µ0Hc, and (BH)max were enhanced after nitrogenation, despite finding some residual nitrogen-free 1:12 phase. The magnetic values of a nitrogenated sample after 3 h were Mr = 75 Am2 kg–1, µ0Hc = 0.500 T and (BH)max = 58 kJ·m–3. Samples were aligned under an applied field of 2 T after washing and were measured in a direction parallel to the applied field. The best value of (BH)max~114 kJ·m–3 was obtained for 3 h and the highest µ0Hc = 0.518 T for 6 h nitrogenation. SEM characterization revealed that the particles have a mean particle size around 360 nm and a rounded shape.


Author(s):  
Tien-Chih Lin ◽  
Nikhil Gupta

Hollow particle (microballoon) filled polymeric composites, called syntactic foams, are tested for impact properties in the present work. Izod type pendulum impact testing is carried out on eight types of foams, which are made of four types of microballoons used in volume fractions of 0.5 and 0.6. Variation in the volume fraction of microballoons leads to a difference in the total energy absorbed during fracture of different types of foams. Results show that syntactic foams containing microballoons of lower density show lower impact strength because of the lower strength of these microballoons. An increase in microballoon volume fraction leads to decreased energy absorption and strength.


2014 ◽  
Vol 968 ◽  
pp. 63-66 ◽  
Author(s):  
Fei Zhao ◽  
Zhan Ling Zhang ◽  
Jun Shuai Li ◽  
Cui Ye ◽  
Ni Li

The microstructure and mechanical properties of the four spring steels with different Si content treated by Q-I-Q-T process were studied by metallographic microscope, MTS, impact testing machine and X-ray stress analyzer. The results show that the tensile strength and yield strength is first increased and then decreased with the increase of Si content, the volume fraction of retained austenite and elongation are fist decreased and then increased when the Si content is less than 2.1%, and the microstructure become finer and homogeneous. When Si content reaches 2.1%, the comprehensive properties of 60Si2CrVA spring steel is the best.


2016 ◽  
Vol 23 (03) ◽  
pp. 1650013 ◽  
Author(s):  
MOHAMMED ASIF M. ◽  
KULKARNI ANUP SHRIKRISHNA ◽  
P. SATHIYA

The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080[Formula: see text]C, 1150[Formula: see text]C and 1200[Formula: see text]C with 15[Formula: see text]min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080[Formula: see text]C followed by water quench and at 1150[Formula: see text]C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov–Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100[Formula: see text]C and that for oil quenching was around 1140[Formula: see text]C. The pit depths were found to be in the range of 100[Formula: see text]nm and width of 1.5–2[Formula: see text][Formula: see text]m.


2015 ◽  
Vol 60 (3) ◽  
pp. 2373-2378 ◽  
Author(s):  
W. Dudziński ◽  
Ł. Konat ◽  
B. Białobrzeska

Abstract In this paper dynamic properties of low-alloy boron steels – Hardox 500, B27 and HTK 900H in delivered state (after hardening and tempering) are considered. Charpy V-notch (CVN) test results in connection with fractography in the ductile-to-brittle transition temperature region were analyzed. Obtained from CVN test the impact transition curve, not always predicts properly a behavior of materials in conditions of dynamic loading. So an analyze of character of fracture helps to evaluate the real behavior of materials. Tested samples were cut out longitudinally in relation to cold work direction. The results of CVN test for selected steels, in temperatures: −40°C, −20°C, 0°C and +20°C are presented. Regarding ductile-to-brittle transition temperature, there is a significant difference taking into account values of Charpy V energy absorbed and a character of fracture.


2005 ◽  
Vol 498-499 ◽  
pp. 251-257 ◽  
Author(s):  
E.G. Gomes ◽  
J.L. Rossi

The material used in this work was produced by spray forming AA7475 aluminium alloy and co-depositing silicon carbide particles (20% volume fraction). The spray formed composite billets were hot extruded into round bars. The microstructure was examined in the as received and heat treated (annealed, aged, and overaged) conditions by scanning electron microscopy. Scanning electron microscopy revealed an extensive Mg2Si phase precipitation at the Al/SiCp interface due probably to Mg segregation from the matrix to the interface, during the heat treatments.


Sign in / Sign up

Export Citation Format

Share Document