scholarly journals Electrophoretic deposition of graphene on basalt fiber for composite applications

2021 ◽  
Vol 10 (1) ◽  
pp. 158-165
Author(s):  
Garima Mittal ◽  
Kyong Y. Rhee

Abstract Basalt fiber (BF), because of having high strength-to-cost ratio, could be suitable for industrial applications replacing the carbon and glass fibers. However, the lack of surface functionality restricts its potential interfacial interactions with the reinforced matrix. Various surface modification approaches are used to tailor the surface properties of BFs such as coating nanomaterials and attaching chemical moieties. In this study, a successful deposition of graphene on basalt fabric was done using eco-friendly and simple electrophoretic deposition method. The confirmation of attached graphene oxide and graphene was done through the scanning electron microscope, Raman spectroscopy, and X-ray photoelectroscopy. Later, the effect of graphene coating on the thermal properties of BF was studied through thermogravimetric analysis and differential scanning calorimetry. Results show that the graphene was successfully coated on BF, and in the presence of graphene coating, the crystallization of BF delayed from 697 to 716°C because of the formation of a protective layer of graphene. Graphene-coated BF could be used further in fiber-reinforced composites to improve the interfacial interaction between the matrix and fiber.

Author(s):  
Christian Felber ◽  
Florian Rödl ◽  
Ferdinand Haider

Abstract The most promising metal processing additive manufacturing technique in industry is selective laser melting, but only a few alloys are commercially available, limiting the potential of this technique. In particular high strength aluminum alloys, which are of great importance in the automotive industry, are missing. An aluminum 2024 alloy, reinforced by Ti-6Al-4V and B4C particles, could be used as a high strength alternative for aluminum alloys. Heat treating can be used to improve the mechanical properties of the metal matrix composite. Dynamic scanning calorimetry shows the formation of Al2Cu precipitates in the matrix instead of the expected Al2CuMg phases due to the loss of magnesium during printing, and precipitation processes are accelerated due to particle reinforcement and additive manufacturing. Strong reactions between aluminum and Ti-6Al-4V are observed in the microstructure, while B4C shows no reaction with the matrix or the titanium. The material shows high hardness, high stiffness, and low ductility through precipitation and particle reinforcement.


2016 ◽  
Vol 1138 ◽  
pp. 147-152
Author(s):  
Aurel Valentin Bîrdeanu

The development and implementation into a high number of industrial applications of materials categorized as (Advanced) High Strength Steels (AHSS) due to their high performance per cost ratio is more and more present and this trend is also combined with the development and implementation of new joining technologies and processes, including laser-arc hybrid processes.The paper presents the results of applying Pulsed LASER-(micro)TIG hybrid welding process, for realizing overlap joints for Zn-coated (A)HSS materials in dissimilar configurations, joints that were presented as designed based on UltraLight Steel Auto Body (ULSAB) principles.The influence of main hybrid welding process parameters was investigated in order to establish if one can obtain joints with high values for the shear strength resistance for some of the actually used dissimilar steel combinations based on designs applied throughout ULSAB project and the autos built following these principles.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 450 ◽  
Author(s):  
Gi Tae Park ◽  
Jin-Hae Chang

The thermal properties, morphologies, oxygen barrier properties, and electrical conductivities of poly(vinyl alcohol) (PVA) hybrid films containing different nanofillers were compared. For the fabrication of the PVA hybrid films, we used reduced graphene oxide (RGO) synthesized from graphite or functionalized hexadecylamine-graphene sheets (HDA-GS) obtained from HDA and GS as a reinforcing filler. The properties of the PVA hybrid films fabricated by intercalating PVA and the fillers for different filler contents ranging from 3 to 10% w/w were then compared. The dispersions of the graphene fillers in the matrix polymers were examined using wide-angle X-ray diffraction and field emission scanning electron microscopy, and the changes in their thermal properties were observed using differential scanning calorimetry and thermogravimetric analysis. Moreover, we measured the oxygen permeability and electrical conductivity of the films to investigate their industrial applications. In addition, all the physical properties of the PVA composites obtained using the two nanofillers were compared.


2021 ◽  
Vol 10 (1) ◽  
pp. 1383-1394
Author(s):  
Garima Mittal ◽  
Sang Woo Lee ◽  
Kyong Y. Rhee

Abstract The interfacial bonding between the fiber and matrix plays a pivotal role in deciding the mechanical performance of fiber-reinforced composites. Basalt fibers, due to the absence of surface functional groups, do not interact potentially with the matrix and hence it leads to insufficient load-carrying capacity of the composite. Incorporating nanomaterials in the matrix and surface treatment of the reinforced fiber can improve the fiber–matrix interface. However, poor dispersion of nanomaterials and the complexity of surface treatment methods restrict their industrial applications. Coating nanomaterials directly onto the fiber surface has the potential to distribute the nanomaterials uniformly, along with strengthening the interfacial bonding between the fiber and matrix. In this study, graphene oxide was coated on the basalt fabric through electrophoretic deposition (EPD), and was further reinforced into the epoxy matrix. The aim of this study is to examine the effects of graphene oxide-coated basalt fiber using EPD on the mechanical and tribological performance of the composite. For comparison, epoxy/basalt composites and graphene oxide-coated epoxy/basalt composites were also prepared. Results showed that due to the improved fiber–matrix bonding and uniform distribution of graphene oxide, the coated basalt-reinforced composites showed better tensile strength and less wear loss.


2002 ◽  
Vol 754 ◽  
Author(s):  
Haein Choi-Yim ◽  
Jan Schroers ◽  
William L. Johnson

ABSTRACTTungsten wire or particle reinforced metallic glass matrix composites are produced by infiltrating liquid Zr57Nb5Al10Cu15.4Ni12.6 (Vit106) into tungsten reinforcements at 1150 K and at 1425 K. X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy are carried out to characterize the composite. The matrix of the composite processed at 1150 K is mostly amorphous, with some embedded crystals. During processing, tungsten dissolves in the glass-forming melt and upon quenching precipitates over a relatively narrow zone near the interface between the tungsten and matrix. In the composites processed at 1425 K, tungsten dissolves in the melt and diffuses through the liquid medium, and then reprecipitates upon quenching. The faster kinetics at this high temperature results uniform distribution of the crystals throughout the matrix. Mechanical properties of the differently processed composites containing wires and particles are compared and discussed. The composites exhibit a plasticity of up to 16 % without sacrificing the high strength to failure that is comparable to monolithic Vit 106.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1634
Author(s):  
Hassan Omar ◽  
Glen J. Smales ◽  
Sven Henning ◽  
Zhi Li ◽  
De-Yi Wang ◽  
...  

Epoxy nanocomposites are promising materials for industrial applications (i.e., aerospace, marine and automotive industry) due to their extraordinary mechanical and thermal properties. Here, the effect of hollow halloysite nanotubes (HNT) on an epoxy matrix (Ep) was the focus of the study. The structure and molecular mobility of the nanocomposites were investigated using a combination of X-ray scattering, calorimetry (differential (DSC) and fast scanning calorimetry (FSC)) and dielectric spectroscopy. Additionally, the effect of surface modification of HNT (polydopamine (PDA) and Fe(OH)3 nanodots) was considered. For Ep/HNT, the glass transition temperature (Tg) was decreased due to a nanoparticle-related decrease of the crosslinking density. For the modified system, Ep/m-HNT, the surface modification resulted in enhanced filler–matrix interactions leading to higher Tg values than the pure epoxy in some cases. For Ep/m-HNT, the amount of interface formed between the nanoparticles and the matrix ranged from 5% to 15%. Through BDS measurements, localized fluctuations were detected as a β- and γ-relaxation, related to rotational fluctuations of phenyl rings and local reorientations of unreacted components. A combination of calorimetry and dielectric spectroscopy revealed a dynamic and structural heterogeneity of the matrix, as confirmed by two glassy dynamics in both systems, related to regions with different crosslinking densities.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 619
Author(s):  
Ferran Serra-Parareda ◽  
Fabiola Vilaseca ◽  
Francesc X. Espinach ◽  
Pere Mutjé ◽  
Marc Delgado-Aguilar ◽  
...  

Biocomposites are composite materials where at least the matrix or the reinforcement phases are obtained from natural and renewable resources. Natural fibers for composite preparation can be obtained from annual plants, wood, recycled products, or agroforestry waste. The present work selected abaca strands, spruce fibers, recycled fibers from old newspaper, and barley fibers as raw materials to produce biocomposites, in combination with a biobased polyethylene. One very important feature in material science and for industrial applications is knowing how a material will deform under load, and this characteristic is represented by Young’s modulus. Therefore, in this work, the stiffness and deformation of the biocomposites were determined and evaluated using macromechanics and micromechanics analyses. Results were compared to those of conventional synthetic composites reinforced with glass fibers. From the micromechanics analysis, the intrinsic Young modulus of the reinforcements was obtained, as well as other micromechanics parameters such as the modulus efficiency and the length and orientation factors. Abaca strands accounted for the highest intrinsic modulus. One interesting outcome was that recycled fibers exhibited similar Young’s moduli to wood fibers. Finally, agroforestry waste demonstrated the lowest stiffening potential. The study explores the opportunity of using different natural fibers when specific properties or applications are desired.


2020 ◽  
Vol 305 ◽  
pp. 49-56
Author(s):  
Thamir Aunal Deen Mohammed Sheet Almula ◽  
Ikram H. Amori ◽  
Mohd Yazid Yahya ◽  
Amran Ayob

The current composite pipes such as E-glass have better properties compared to metallic pipes. However, these pipes are prone to failure during its service life. In contrast, natural fiber such as basalt fiber composite pipes has better mechanical characteristics compared to current composite pipes. Hoop tensile, longitudinal tensile and internal pressure loads were carried out through experimentally and numerically investigation on the basalt/epoxy and E-glass/epoxy pipe performance. The basalt/epoxy and E-glass/epoxy composite pipes have been manufactured with ±55o winding angle using dry filament winding with impregnation of epoxy resin used Vacuum Infusion Process (VIP) technique and investigated. Basalt and E-glass composite pipes with winding angles of ±45o, ±55o, ±65o, ±75o were fabricated in order to assess the optimal winding angle which can resists the subjected loads. There were good agreement between numerical and experimental results have been recorded. For internal pressure test, the basalt pipes have more internal pressure carrying capacity more than E-glass by 2.41%. Through this investigation, can be concluded that the natural based fiber of basalt can be used as a suitable replacement than E-glass, has further advantages of being cheap, abundant, renewable and easily recyclable. The also possess high strength, excellent flexural stiffness to cost ratio and low thermal conductivity


Author(s):  
A. ARUL JEYA KUMAR ◽  
NIRANJAN S. RAJ ◽  
C. SAIPRASAD ◽  
AGHALAYAM R. SUDHANVA

This paper is focused on the analysis of the morphological and thermal properties of the biomedical composites, polylactic acid (PLA) and polycaprolactone (PCL) matrix, reinforced with basalt fibers (BFs) and using halloysite nanotubes (HNT) as filler material. Four different composites, viz. PPHB 1, PPHB 2, PPHB 3 and PPHB 4, are obtained by varying the weight fractions of these materials using twin-screw extrusion followed by injection molding. The morphological characterization is performed on these composites using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. SEM reveals homogenous and strong bonding between the matrix, reinforcement and filler. The BF are well embedded in the matrix with a random orientation. No formation of voids and cracks is observed. The functional groups present and the types of vibration experienced by the chemical bonds were observed in the FTIR spectra. The composites are subjected to thermal testing such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The PPHB 2, which contains 80% PLA, 10% BF, 7% PCL and 3% HNT, has the highest degree of crystallinity, as revealed by DSC, and exhibits the most optimum thermal degradation characteristics as indicated by TGA.


Author(s):  
Mohammad S Mahdieh ◽  
Ramezan A Mahdavinejad

Due to light weight and high strength, industrial applications of ultra-fined grain materials are becoming prevalent. Ultra-fined grain materials are produced by severe plastic deformation techniques such as equal channel angular pressing, which impose large strains on ultra-fined grain microstructure, resulting in accumulation of the lattice defects and dislocations and consequently increasing the stored energy. Due to high stored energy of ultra-fined grain materials, they are thermodynamically unstable and prone to microstructural evolutions. In order to manufacture industrials parts, applying machining methods such as electrical discharge machining is necessary. Electrical discharge machining is a thermo-electrical process that erodes the surface of the workpiece by high temperature sparks. The surface of the workpiece is melted and then suddenly quenched into dielectric, and eventually a very hard and brittle layer, known as recast layer, is formed. The recast layer and heat-affected zone are the source of microstructural changes that affect the special properties of the ultra-fined grain materials and their stored energy. In this study, the bulk and local stored energy of electrical discharge machined ultra-fined grain aluminum samples are measured via differential scanning calorimetry technique and micro-hardness test. In the following, the effects of the electrical discharge machining process on ultra-fined grain aluminum are investigated. The results show that electrical discharge machining process alters the stored energy of the ultra-fined grain materials.


Sign in / Sign up

Export Citation Format

Share Document