The glymphatic system and meningeal lymphatics of the brain: new understanding of brain clearance

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Galina Yankova ◽  
Olga Bogomyakova ◽  
Andrey Tulupov

Abstract The glymphatic system and meningeal lymphatics have recently been characterized. Glymphatic system is a glia-dependent system of perivascular channels, and it plays an important role in the removal of interstitial metabolic waste products. The meningeal lymphatics may be a key drainage route for cerebrospinal fluid into the peripheral blood, may contribute to inflammatory reaction and central nervous system (CNS) immune surveillance. Breakdowns and dysfunction of the glymphatic system and meningeal lymphatics play a crucial role in age-related brain changes, the pathogenesis of neurovascular and neurodegenerative diseases, as well as in brain injuries and tumors. This review discusses the relationship recently characterized meningeal lymphatic vessels with the glymphatic system, which provides perfusion of the CNS with cerebrospinal and interstitial fluids. The review also presents the results of human studies concerning both the presence of meningeal lymphatics and the glymphatic system. A new understanding of how aging, medications, sleep and wake cycles, genetic predisposition, and even body posture affect the brain drainage system has not only changed the idea of brain fluid circulation but has also contributed to an understanding of the pathology and mechanisms of neurodegenerative diseases.

2020 ◽  
Vol 9 (3) ◽  
pp. 81-89
Author(s):  
G. S. Yankova ◽  
O. B. Bogomyakova

The lymphatic drainage system of the brain is assumed to consist of the lymphatic system and a network of meningeal lymphatic vessels. This system supports brain homeostasis, participates in immune surveillance and presents a new therapeutic target in the treatment of neurological disorders.The article analyzes and systematizes data on the brain lymphatic drainage system. The key components of this system are considered: recently described meningeal lymphatic vessels and their relationship with the glymphatic system, which provides perfusion of the central nervous system with cerebrospinal and interstitial fluids. The lymphatic drainage system helps to maintain water and ion balances of the interstitial fluid and to remove metabolic waste products, assists in reabsorption of macromolecules. Disorders in its work play a crucial role in age-related changes in the brain, the pathogenesis of neurovascular and neurodegenerative diseases, as well as injuries and brain tumors. The review also presents the results of human studies concerning the presence, anatomy and structure of meningeal lymphatic vessels and the glymphatic system. The discovery of the brain lymphatic drainage system has not only changed our understanding of cerebrospinal fluid circulation, but also contributed to understanding the pathology and mechanisms of neurodegenerative diseases.


2021 ◽  
pp. 0271678X2098238
Author(s):  
Tekla Maria Kylkilahti ◽  
Eline Berends ◽  
Marta Ramos ◽  
Nagesh C Shanbhag ◽  
Johannes Töger ◽  
...  

Age-related neurodegenerative diseases are a growing burden to society, and many are sporadic, meaning that the environment, diet and lifestyle play significant roles. Cerebrospinal fluid (CSF)-mediated clearing of brain waste products via perivascular pathways, named the glymphatic system, is receiving increasing interest, as it offers unexplored perspectives on understanding neurodegenerative diseases. The glymphatic system is involved in clearance of metabolic by-products such as amyloid-β from the brain, and its function is believed to lower the risk of developing some of the most common neurodegenerative diseases. Here, we present magnetic resonance imaging (MRI) data on the heart cycle’s control of CSF flow in humans which corroborates findings from animal studies. We also review the importance of sleep, diet, vascular health for glymphatic clearance and find that these factors are also known players in brain longevity.


2021 ◽  
Vol 4 (4) ◽  
pp. 551-565
Author(s):  
Ryan D Bitar ◽  
Jorge L Torres-Garza ◽  
Russel J Reiter ◽  
William T Phillips

The central nervous system was thought to lack a lymphatic drainage until the recent discovery of the neural glymphatic system.  This highly specialized waste disposal network includes classical lymphatic vessels in the dura that absorb fluid and metabolic by-products and debris from the underlying cerebrospinal fluid (CSF) in the subarachnoid space. The subarachnoid space is continuous with the Virchow-Robin peri-arterial and peri-vascular spaces which surround the arteries and veins that penetrate into the neural tissue, respectively.  The dural lymphatic vessels exit the cranial vault via an anterior and a posterior route and eventually drain into the deep cervical lymph nodes. Aided by the presence of aquaporin 4 on the perivascular endfeet of astrocytes, nutrients and other molecules enter the brain from peri-arterial spaces and form interstitial fluid (ISF) that baths neurons and glia before being released into peri-venous spaces.  Melatonin, a pineal-derived secretory product which is in much higher concentration in the CSF than in the blood, is believed to follow this route and to clear waste products such as amyloid-β from the interstitial space. The clearance of amyloid-β reportedly occurs especially during slow wave sleep which happens concurrently with highest CSF levels of melatonin.  Experimentally, exogenously-administered melatonin defers amyloid-β buildup in the brain of animals and causes its accumulation in the cervical lymph nodes. Clinically, with increased age CSF melatonin levels decrease markedly, co-incident with neurodegeneration and dementia.  Collectively, these findings suggest a potential association between the loss of melatonin, decreased glymphatic drainage and neurocognitive decline in the elderly.


2020 ◽  
Vol 18 (11) ◽  
pp. 1054-1063 ◽  
Author(s):  
Vladimir N. Nikolenko ◽  
Marine V. Oganesyan ◽  
Angela D. Vovkogon ◽  
Arina T. Nikitina ◽  
Ekaterina A. Sozonova ◽  
...  

Until recently, it was thought that there were no lymphatic vessels in the central nervous system (CNS). Therefore, all metabolic processes were assumed to take place only in the circulation of the cerebrospinal fluid (CSF) and through the blood-brain barrier’s (BBB), which regulate ion transport and ensure the functioning of the CNS. However, recent findings yield a new perspective: There is an exchange of CSF with interstitial fluid (ISF), which is drained to the paravenous space and reaches lymphatic nodes at the end. This circulation is known as the glymphatic system. The glymphatic system is an extensive network of meningeal lymphatic vessels (MLV) in the basal area of the skull that provides another path for waste products from CNS to reach the bloodstream. MLV develop postnatally, initially appearing around the foramina in the basal part of the skull and the spinal cord, thereafter sprouting along the skull’s blood vessels and spinal nerves in various areas of the meninges. VEGF-C protein (vascular endothelial growth factor), expressed mainly by vascular smooth cells, plays an important role in the development of the MLV. The regenerative potential and plasticity of MLV and the novel discoveries related to CNS drainage offer potential for the treatment of neurodegenerative diseases such as dementia, hydrocephalus, stroke, multiple sclerosis, and Alzheimer disease (AD). Herein, we present an overview of the structure and function of the glymphatic system and MLV, and their potential involvement in the pathology and progression of neurodegenerative diseases.


2020 ◽  
Vol 10 (11) ◽  
pp. 868
Author(s):  
Oliver Cameron Reddy ◽  
Ysbrand D. van der Werf

The glymphatic system is a “pseudo-lymphatic” perivascular network distributed throughout the brain, responsible for replenishing as well as cleansing the brain. Glymphatic clearance is the macroscopic process of convective fluid transport in which harmful interstitial metabolic waste products are removed from the brain intima. This paper addresses the glymphatic system, its dysfunction and the major consequences of impaired clearance in order to link neurodegeneration and glymphatic activity with lifestyle choices. Glymphatic clearance can be manipulated by sleep deprivation, cisterna magna puncture, acetazolamide or genetic deletion of AQP4 channels, but how lifestyle choices affect this brain-wide clearance system remains to be resolved. This paper will synthesize existing literature on glymphatic clearance, sleep, Alzheimer’s disease and lifestyle choices, in order to harness the power of this mass transport system, promote healthy brain ageing and possibly prevent neurodegenerative processes. This paper concludes that 1. glymphatic clearance plays a major role in Alzheimer’s pathology; 2. the vast majority of waste clearance occurs during sleep; 3. dementias are associated with sleep disruption, alongside an age-related decline in AQP4 polarization; and 4. lifestyle choices such as sleep position, alcohol intake, exercise, omega-3 consumption, intermittent fasting and chronic stress all modulate glymphatic clearance. Lifestyle choices could therefore alter Alzheimer’s disease risk through improved glymphatic clearance, and could be used as a preventative lifestyle intervention for both healthy brain ageing and Alzheimer’s disease.


Science ◽  
2020 ◽  
Vol 370 (6512) ◽  
pp. 50-56 ◽  
Author(s):  
Maiken Nedergaard ◽  
Steven A. Goldman

Sleep is evolutionarily conserved across all species, and impaired sleep is a common trait of the diseased brain. Sleep quality decreases as we age, and disruption of the regular sleep architecture is a frequent antecedent to the onset of dementia in neurodegenerative diseases. The glymphatic system, which clears the brain of protein waste products, is mostly active during sleep. Yet the glymphatic system degrades with age, suggesting a causal relationship between sleep disturbance and symptomatic progression in the neurodegenerative dementias. The ties that bind sleep, aging, glymphatic clearance, and protein aggregation have shed new light on the pathogenesis of a broad range of neurodegenerative diseases, for which glymphatic failure may constitute a therapeutically targetable final common pathway.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Kohei Segawa ◽  
Yukari Blumenthal ◽  
Yuki Yamawaki ◽  
Gen Ohtsuki

The lymphatic system is important for antigen presentation and immune surveillance. The lymphatic system in the brain was originally introduced by Giovanni Mascagni in 1787, while the rediscovery of it by Jonathan Kipnis and Kari Kustaa Alitalo now opens the door for a new interpretation of neurological diseases and therapeutic applications. The glymphatic system for the exchanges of cerebrospinal fluid (CSF) and interstitial fluid (ISF) is associated with the blood-brain barrier (BBB), which is involved in the maintenance of immune privilege and homeostasis in the brain. Recent notions from studies of postmortem brains and clinical studies of neurodegenerative diseases, infection, and cerebral hemorrhage, implied that the breakdown of those barrier systems and infiltration of activated immune cells disrupt the function of both neurons and glia in the parenchyma (e.g., modulation of neurophysiological properties and maturation of myelination), which causes the abnormality in the functional connectivity of the entire brain network. Due to the vulnerability, such dysfunction may occur in developing brains as well as in senile or neurodegenerative diseases and may raise the risk of emergence of psychosis symptoms. Here, we introduce this hypothesis with a series of studies and cellular mechanisms.


2021 ◽  
Vol 13 ◽  
Author(s):  
Xiangyue Zhou ◽  
Youwei Li ◽  
Cameron Lenahan ◽  
Yibo Ou ◽  
Minghuan Wang ◽  
...  

Stroke is the destruction of brain function and structure, and is caused by either cerebrovascular obstruction or rupture. It is a disease associated with high mortality and disability worldwide. Brain edema after stroke is an important factor affecting neurologic function recovery. The glymphatic system is a recently discovered cerebrospinal fluid (CSF) transport system. Through the perivascular space and aquaporin 4 (AQP4) on astrocytes, it promotes the exchange of CSF and interstitial fluid (ISF), clears brain metabolic waste, and maintains the stability of the internal environment within the brain. Excessive accumulation of fluid in the brain tissue causes cerebral edema, but the glymphatic system plays an important role in the process of both intake and removal of fluid within the brain. The changes in the glymphatic system after stroke may be an important contributor to brain edema. Understanding and targeting the molecular mechanisms and the role of the glymphatic system in the formation and regression of brain edema after stroke could promote the exclusion of fluids in the brain tissue and promote the recovery of neurological function in stroke patients. In this review, we will discuss the physiology of the glymphatic system, as well as the related mechanisms and therapeutic targets involved in the formation of brain edema after stroke, which could provide a new direction for research against brain edema after stroke.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sichao Chen ◽  
Linqian Shao ◽  
Li Ma

Brain edema is a severe stroke complication that is associated with prolonged hospitalization and poor outcomes. Swollen tissues in the brain compromise cerebral perfusion and may also result in transtentorial herniation. As a physical and biochemical barrier between the peripheral circulation and the central nervous system (CNS), the blood–brain barrier (BBB) plays a vital role in maintaining the stable microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the dysfunction of the BBB results in increased paracellular permeability, directly contributing to the extravasation of blood components into the brain and causing cerebral vasogenic edema. Recent studies have led to the discovery of the glymphatic system and meningeal lymphatic vessels, which provide a channel for cerebrospinal fluid (CSF) to enter the brain and drain to nearby lymph nodes and communicate with the peripheral immune system, modulating immune surveillance and brain responses. A deeper understanding of the function of the cerebral lymphatic system calls into question the known mechanisms of cerebral edema after stroke. In this review, we first discuss how BBB disruption after stroke can cause or contribute to cerebral edema from the perspective of molecular and cellular pathophysiology. Finally, we discuss how the cerebral lymphatic system participates in the formation of cerebral edema after stroke and summarize the pathophysiological process of cerebral edema formation after stroke from the two directions of the BBB and cerebral lymphatic system.


QJM ◽  
2020 ◽  
Vol 113 (Supplement_1) ◽  
Author(s):  
S S I Elkilany ◽  
M M A Zakaria ◽  
R F Tash ◽  
A Y Mostafa ◽  
S W Abdelmalik ◽  
...  

Abstract Background The importance of sleep and the impact of its deprivation on development of brain pathology became a recent subject of interest in medicine. The restorative effect of sleep on the brain and the harmful effects of insomnia have been recently revealed through the discovery of the glymphatic system and its association with sleep. Aim of work Specific objectives are: To detect histological and apoptotic changes in the neurons and dendrites of the cornu Amonis and the dentate gyrus in sleep deprived rats in comparison to rats with undisturbed sleep pattern (control). To detect deposition of neurotoxic metabolites in comu Amonis and dentate gyrus in sleep deprived rats in comparison to controls. Methods Twenty four adult male Albino rats were used in the present experiment. randomly categorized into four equal groups; Group A1 served as the control group, Group .A2 one day sleep deprivation, Group A3 three days sleep deprivation and Group A4 seven days sleep deprivation. They were deprived of sleep using grid over water method where the animals placed over a grid suspended above tank filled with water with free access to food (rat chew) and water. Hippocampai specimens were collected, processed for paraffin blocks and examined by light microscopy. Results there were neurodegenerative signs appeared from day one sleep deprivation, increased by day three and prevailed by day seven. It was confirmed by apoptotic changes detected by caspase 3 immunohistochemical staining. Furthermore, deposition of beta amyloid appeared in rats deprived of sleep and confirmed by congo red stain. Conclusion Adequate sleep is essential for integrity of the newly discovered glymphatic system responsible for clearance of the brain from waste products including the area most involved in learning and memory function; the hippocampus. Correction of SD could be a viable therapeutic strategy to prevent the onset or slow the progression of AD. Recommendations Further characterization of the glymphatic system in humans are required, it may lead to new therapies and methods of prevention of neurodegenerative diseases. Correction of SD could be a viable therapeutic strategy to prevent the onset or slow the progression of AD.


Sign in / Sign up

Export Citation Format

Share Document