scholarly journals Functional roles of the microbiota-gut-brain axis in Alzheimer’s disease: Implications of gut microbiota-targeted therapy

2021 ◽  
Vol 12 (1) ◽  
pp. 581-600
Author(s):  
Si-Ran Zhong ◽  
Qi Kuang ◽  
Fan Zhang ◽  
Ben Chen ◽  
Zhen-Guo Zhong

Abstract Increasing scientific evidence demonstrates that the gut microbiota influences normal physiological homeostasis and contributes to pathogenesis, ranging from obesity to neurodegenerative diseases, such as Alzheimer’s disease (AD). Gut microbiota can interact with the central nervous system (CNS) through the microbiota-gut-brain axis. The interaction is mediated by microbial secretions, metabolic interventions, and neural stimulation. Here, we review and summarize the regulatory pathways (immune, neural, neuroendocrine, or metabolic systems) in the microbiota-gut-brain axis in AD pathogenesis. Besides, we highlight the significant roles of the intestinal epithelial barrier and blood–brain barrier (BBB) in the microbiota-gut-brain axis. During the progression of AD, there is a gradual shift in the gut microbiota and host co-metabolic relationship, leading to gut dysbiosis, and the imbalance of microbial secretions and metabolites, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs). These products may affect the CNS metabolic state and immune balance through the microbiota-gut-brain axis. Further, we summarize the potential microbiota-gut-brain axis-targeted therapy including carbohydrates, probiotics, dietary measures, and propose new strategies toward the development of anti-AD drugs. Taken together, the data in this review suggest that remodeling the gut microbiota may present a tractable strategy in the management and development of new therapeutics against AD and other neurodegenerative diseases.

2021 ◽  
pp. 1-20
Author(s):  
Daniel Cuervo-Zanatta ◽  
Jaime Garcia-Mena ◽  
Claudia Perez-Cruz

Background: Normal aging is accompanied by cognitive deficiencies, affecting women and men equally. Aging is the main risk factor for Alzheimer’s disease (AD), with women having a higher risk. The higher prevalence of AD in women is associated with the abrupt hormonal decline seen after menopause. However, other factors may be involved in this sex-related cognitive decline. Alterations in gut microbiota (GM) and its bioproducts have been reported in AD subjects and transgenic (Tg) mice, having a direct impact on brain amyloid-β pathology in male (M), but not in female (F) mice. Objective: The aim of this work was to determine GM composition and cognitive dysfunction in M and F wildtype (WT) and Tg mice, in a sex/genotype segregation design. Methods: Anxiety, short term working-memory, spatial learning, and long-term spatial memory were evaluated in 6-month-old WT and Tg male mice. Fecal short chain fatty acids were determined by chromatography, and DNA sequencing and bioinformatic analyses were used to determine GM differences. Results: We observed sex-dependent differences in cognitive skills in WT mice, favoring F mice. However, the cognitive advantage of females was lost in Tg mice. GM composition showed few sex-related differences in WT mice. Contrary, Tg-M mice presented a more severe dysbiosis than Tg-F mice. A decreased abundance of Ruminococcaceae was associated with cognitive deficits in Tg-F mice, while butyrate levels were positively associated with better working- and object recognition-memory in WT-F mice. Conclusion: This report describes a sex-dependent association between GM alterations and cognitive impairment in a mice model of AD.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1370
Author(s):  
Umair Shabbir ◽  
Akanksha Tyagi ◽  
Fazle Elahi ◽  
Simon Okomo Aloo ◽  
Deog-Hwan Oh

Gut microbiota (GM) play a role in the metabolic health, gut eubiosis, nutrition, and physiology of humans. They are also involved in the regulation of inflammation, oxidative stress, immune responses, central and peripheral neurotransmission. Aging and unhealthy dietary patterns, along with oxidative and inflammatory responses due to gut dysbiosis, can lead to the pathogenesis of neurodegenerative diseases, especially Alzheimer’s disease (AD). Although the exact mechanism between AD and GM dysbiosis is still unknown, recent studies claim that secretions from the gut can enhance hallmarks of AD by disturbing the intestinal permeability and blood–brain barrier via the microbiota–gut–brain axis. Dietary polyphenols are the secondary metabolites of plants that possess anti-oxidative and anti-inflammatory properties and can ameliorate gut dysbiosis by enhancing the abundance of beneficial bacteria. Thus, modulation of gut by polyphenols can prevent and treat AD and other neurodegenerative diseases. This review summarizes the role of oxidative stress, inflammation, and GM in AD. Further, it provides an overview on the ability of polyphenols to modulate gut dysbiosis, oxidative stress, and inflammation against AD.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1267 ◽  
Author(s):  
Francesca La Rosa ◽  
Mario Clerici ◽  
Daniela Ratto ◽  
Alessandra Occhinegro ◽  
Anna Licito ◽  
...  

Despite intensive study, neurodegenerative diseases remain insufficiently understood, precluding rational design of therapeutic interventions that can reverse or even arrest the progressive loss of neurological function. In the last decade, several theories investigating the causes of neurodegenerative diseases have been formulated and a condition or risk factor that can contribute is described by the gut-brain axis hypothesis: stress, unbalanced diet, and drugs impact altering microbiota composition which contributes to dysbiosis. An altered gut microbiota may lead to a dysbiotic condition and to a subsequent increase in intestinal permeability, causing the so-called leaky-gut syndrome. Herein, in this review we report recent findings in clinical trials on the risk factor of the gut-brain axis in Alzheimer’s disease and on the effect of omega-3 supplementation, in shifting gut microbiota balance towards an eubiosis status. Despite this promising effect, evidences reported in selected randomized clinical trials on the effect of omega-3 fatty acid on cognitive decline in Alzheimer’s disease are few. Only Mild Cognitive Impairment, a prodromal state that could precede the progress to Alzheimer’s disease could be affected by omega-3 FA supplementation. We report some of the critical issues which emerged from these studies. Randomized controlled trials in well-selected AD patients considering the critical points underlined in this review are warranted.


2021 ◽  
pp. 1-7
Author(s):  
Halle J. Kincaid ◽  
Ravinder Nagpal ◽  
Hariom Yadav

<b><i>Background:</i></b> Alzheimer’s disease (AD) is the most common form of dementia, particularly in older adults, with clinical manifestations of progressive cognitive decline and functional impairment. The prevalence of AD and related dementia is mounting worldwide, but its etiology remains unresolved, with no available preventative or ameliorative therapy. Emerging evidence suggests that the gut microbiota of patients with AD is different from cognitively normal counterparts. <b><i>Summary:</i></b> Communication between gut and brain (gut-brain axis) plays a crucial role in AD pathology. Bacteria inhabiting the gut strongly influence this gut-brain axis and thus may participate in AD pathology. Diet, one of the strongest modulators of gut microbiota, also strongly influences brain health and AD pathology. Gut microbiota metabolites including short-chain fatty acids, pro-inflammatory factors, and neurotransmitters may also affect AD pathogenesis and associated cognitive decline. Therefore, investigation of diet-microbiota-brain axis is important to better understand its contribution in AD pathology and its potential use as a target to prevent and treat AD. Herein, we discuss the link between AD and gut microbiota and ponder how microbiota modulation through nutritional approaches may offer avenues for discovering novel preventive and therapeutic strategies against AD. <b><i>Key Message:</i></b> A strong association exists between lifestyle factors and AD prevalence wherein unhealthy dietary factors have been linked to neurodegeneration. Specific prudent dietary patterns might help in preventing or delaying AD progression by affecting β-amyloid production and tau processing and regulating AD-associated inflammation, metabolism and oxidative stress, plausibly via modulating gut microbiota.


2020 ◽  
Vol 6 (5) ◽  
pp. 1-7
Author(s):  
Chinonye A Maduagwuna ◽  

Study background: Chronic neuroinflammation is a common emerging hallmark of several neurodegenerative diseases. Alzheimer’s Disease (AD) is the most common cause of dementia among the elderly and is characterized by loss of memory and other cognitive functions.


2019 ◽  
Vol 16 (9) ◽  
pp. 834-835
Author(s):  
Petter Järemo ◽  
Alenka Jejcic ◽  
Vesna Jelic ◽  
Tasmin Shahnaz ◽  
Homira Behbahani ◽  
...  

Background: Alzheimer’s Disease (AD) features the accumulation of β-amyloid in erythrocytes. The subsequent red cell damage may well affect their oxygen-carrying capabilities. 2,3- diphosphoglycerate (2,3-DPG) binds to the hemoglobin thereby promoting oxygen release. It is theorized that 2,3-DPG is reduced in AD and that the resulting hypoxia triggers erythropoietin (EPO) release. Methods & Objective: To explore this theory, we analyzed red cell 2,3-DPG content and EPO in AD, mild cognitive impairment, and the control group, subjective cognitive impairment. Results: We studied (i) 2,3-DPG in red cells, and (ii) circulating EPO in AD, and both markers were unaffected by dementia. Disturbances of these oxygen-regulatory pathways do not appear to participate in brain hypoxia in AD.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Nesrine S. El Sayed ◽  
Mamdooh H. Ghoneum

Background. Many neurodegenerative diseases such as Alzheimer’s disease are associated with oxidative stress. Therefore, antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases. Objective. We investigated the ability of the antioxidant Antia to exert a protective effect against sporadic Alzheimer’s disease (SAD) induced in mice. Antia is a natural product that is extracted from the edible yamabushitake mushroom, the gotsukora and kothala himbutu plants, diosgenin (an extract from wild yam tubers), and amla (Indian gooseberry) after treatment with MRN-100. Methods. Single intracerebroventricular (ICV) injection of streptozotocin (STZ) (3 mg/kg) was used for induction of SAD in mice. Antia was injected intraperitoneally (i.p.) in 3 doses (25, 50, and 100 mg/kg/day) for 21 days. Neurobehavioral tests were conducted within 24 h after the last day of injection. Afterwards, mice were sacrificed and their hippocampi were rapidly excised, weighed, and homogenized to be used for measuring biochemical parameters. Results. Treatment with Antia significantly improved mice performance in the Morris water maze. In addition, biochemical analysis showed that Antia exerted a protective effect for several compounds, including GSH, MDA, NF-κB, IL-6, TNF-α, and amyloid β. Further studies with western blot showed the protective effect of Antia for the JAK2/STAT3 pathway. Conclusions. Antia exerts a significant protection against cognitive dysfunction induced by ICV-STZ injection. This effect is achieved through targeting of the amyloidogenic, inflammatory, and oxidative stress pathways. The JAK2/STAT3 pathway plays a protective role for neuroinflammatory and neurodegenerative diseases such as SAD.


2020 ◽  
Vol 57 (12) ◽  
pp. 5026-5043 ◽  
Author(s):  
Shan Liu ◽  
Jiguo Gao ◽  
Mingqin Zhu ◽  
Kangding Liu ◽  
Hong-Liang Zhang

Abstract Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.


Sign in / Sign up

Export Citation Format

Share Document