The Vacuolar Localization of Grapevine Peroxidase Isoenzymes Capable of Oxidizing 4-Hydroxystilbenes

1992 ◽  
Vol 47 (3-4) ◽  
pp. 215-221 ◽  
Author(s):  
Antonio A. Calderón ◽  
E. García-Florenciano ◽  
María A. Pedreño ◽  
Romualdo Muñoz ◽  
A. Ros Barceló

Keywords A study of the subcellular localization of peroxidase isoenzymes capable of oxidizing 4-hydroxystilbenes to viniferin-type compounds has been carried out in cultured cells derived from Vitis vinifera cv. Gamay berries. The study revealed that these isoenzymes are apparently located, in soluble form, in the vacuolar sap and are strongly inhibited by vacuolar anthocyani( di)ns in the concentration range found in planta. These results suggest that the inhibition of the 4-HS peroxidase system in vacuoles, as a consequence of anthocyani(di)n accumulation, could be responsible for the loss of viniferin production potential which accompanies grape berry veraison.

1989 ◽  
Vol 44 (11-12) ◽  
pp. 931-936 ◽  
Author(s):  
Ralf Perrey ◽  
Marie-Theres Hauser ◽  
Michael Wink

Abstract , leaf protoplasts and cell suspension cultures of Lupinus polyphyllus and isolated vacuoles were studied for cellular and subcellular localization of peroxidase isoenzymes. Isoelectric focusing revealed 16 peroxidase isoenzymes. The basic peroxidase isoenzymes are predominantly localized in the vacuole and, to a minor degree, unbound in the intercellular space. The acidic isoenzymes are cell wall-bound in plants and not detectable in suspension-cultured cells. Large amounts (up to 11.0 U/ml) of a single basic isoenzyme are detectable in the spent medium of cell suspension cultures.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 685
Author(s):  
Enerand Mackon ◽  
Yafei Ma ◽  
Guibeline Charlie Jeazet Dongho Epse Mackon ◽  
Qiufeng Li ◽  
Qiong Zhou ◽  
...  

Anthocyanins belong to the group of flavonoid compounds broadly distributed in plant species responsible for attractive colors. In black rice (Oryza sativa L.), they are present in the stems, leaves, stigmas, and caryopsis. However, there is still no scientific evidence supporting the existence of compartmentalization and trafficking of anthocyanin inside the cells. In the current study, we took advantage of autofluorescence with anthocyanin’s unique excitation/emission properties to elucidate the subcellular localization of anthocyanin and report on the in planta characterization of anthocyanin prevacuolar vesicles (APV) and anthocyanic vacuolar inclusion (AVI) structure. Protoplasts were isolated from the stigma of black and brown rice and imaging using a confocal microscope. Our result showed the fluorescence displaying magenta color in purple stigma and no fluorescence in white stigma when excitation was provided by a helium–neon 552 nm and emission long pass 610–670 nm laser. The fluorescence was distributed throughout the cell, mainly in the central vacuole. Fluorescent images revealed two pools of anthocyanin inside the cells. The diffuse pools were largely found inside the vacuole lumen, while the body structures could be observed mostly inside the cytoplasm (APV) and slightly inside the vacuole (AVI) with different shapes, sizes, and color intensity. Based on their sizes, AVI could be grouped into small (Ф < 0.5 um), middle (Ф between 0.5 and 1 um), and large size (Ф > 1 um). Together, these results provided evidence about the sequestration and trafficking of anthocyanin from the cytoplasm to the central vacuole and the existence of different transport mechanisms of anthocyanin. Our results suggest that stigma cells are an excellent system for in vivo studying of anthocyanin in rice and provide a good foundation for understanding anthocyanin metabolism in plants, sequestration, and trafficking in black rice.


2001 ◽  
Vol 75 (6) ◽  
pp. 2792-2802 ◽  
Author(s):  
Dawn K. Krueger ◽  
Sean M. Kelly ◽  
Daniel N. Lewicki ◽  
Rosanna Ruffolo ◽  
Thomas M. Gallagher

ABSTRACT The prototype JHM strain of murine hepatitis virus (MHV) is an enveloped, RNA-containing coronavirus that has been selected in vivo for extreme neurovirulence. This virus encodes spike (S) glycoproteins that are extraordinarily effective mediators of intercellular membrane fusion, unique in their ability to initiate fusion even without prior interaction with the primary MHV receptor, a murine carcinoembryonic antigen-related cell adhesion molecule (CEACAM). In considering the possible role of this hyperactive membrane fusion activity in neurovirulence, we discovered that the growth of JHM in tissue culture selected for variants that had lost murine CEACAM-independent fusion activity. Among the collection of variants, mutations were identified in regions encoding both the receptor-binding (S1) and fusion-inducing (S2) subunits of the spike protein. Each mutation was separately introduced into cDNA encoding the prototype JHM spike, and the set of cDNAs was expressed using vaccinia virus vectors. The variant spikes were similar to that of JHM in their assembly into oligomers, their proteolysis into S1 and S2 cleavage products, their transport to cell surfaces, and their affinity for a soluble form of murine CEACAM. However, these tissue culture-adapted spikes were significantly stabilized as S1-S2 heteromers, and their entirely CEACAM-dependent fusion activity was delayed or reduced relative to prototype JHM spikes. The mutations that we have identified therefore point to regions of the S protein that specifically regulate the membrane fusion reaction. We suggest that cultured cells, unlike certain in vivo environments, select for S proteins with delayed, CEACAM-dependent fusion activities that may increase the likelihood of virus internalization prior to the irreversible uncoating process.


1997 ◽  
Vol 328 (2) ◽  
pp. 415-423 ◽  
Author(s):  
Stéphane NION ◽  
Olivier BRIAND ◽  
Sophie LESTAVEL ◽  
Gérard TORPIER ◽  
Françoise NAZIH ◽  
...  

To elucidate further the binding of high-density-lipoprotein subfraction 3 (HDL3) to cells, the involvement of glycosylphosphatidylinositol-anchored proteins (GPI-proteins) was studied. Treatment of cultured cells, such as fibroblasts or SK-MES-1 cells, with a phosphatidylinositol-specific phospholipase C (PI-PLC) significantly decreases specific HDL3 binding. Moreover, PI-PLC treatment of cultured cells or cellular plasma membrane fractions results in releasing proteins. These proteins have a soluble form and can also bind HDL3, as revealed by ligand blotting experiments with HDL3. In order to obtain enriched GPI-proteins, we used a detergent-free purification method to prepare a caveolar membrane fraction. In the caveolar fraction, we obtained, by ligand blotting experiments, the enrichment of two HDL3-binding proteins with molecular masses of 120 and 80 kDa. These proteins were also revealed in a plasma membrane preparation with two other proteins, with molecular masses of 150 and 104 kDa, and were sensitive to PI-PLC treatment. Electron microscopy also showed the binding of Au-labelled HDL3 inside the caveolar membrane invaginations. In SK-MES-1 cells, HDL3 are internalized into a particular structure, resulting in the accumulation and concentration of such specific membrane domains. To sum up, a demonstration has been made of the implication of GPI-proteins as well as caveolae in the binding of HDL3 to cells.


2021 ◽  
Vol 15 ◽  
Author(s):  
Atsushige Ashimori ◽  
Yasukazu Nakahata ◽  
Toshiya Sato ◽  
Yuichiro Fukamizu ◽  
Takaaki Matsui ◽  
...  

The circadian clock possesses robust systems to maintain the rhythm approximately 24 h, from cellular to organismal levels, whereas aging is known to be one of the risk factors linked to the alternation of circadian physiology and behavior. The amount of many metabolites in the cells/body is altered with the aging process, and the most prominent metabolite among them is the oxidized form of nicotinamide adenine dinucleotide (NAD+), which is associated with posttranslational modifications of acetylation and poly-ADP-ribosylation status of circadian clock proteins and decreases with aging. However, how low NAD+ condition in cells, which mimics aged or pathophysiological conditions, affects the circadian clock is largely unknown. Here, we show that low NAD+ in cultured cells promotes PER2 to be retained in the cytoplasm through the NAD+/SIRT1 axis, which leads to the attenuated amplitude of Bmal1 promoter-driven luciferase oscillation. We found that, among the core clock proteins, PER2 is mainly affected in its subcellular localization by NAD+ amount, and a higher cytoplasmic PER2 localization was observed under low NAD+ condition. We further found that NAD+-dependent deacetylase SIRT1 is the regulator of PER2 subcellular localization. Thus, we anticipate that the altered PER2 subcellular localization by low NAD+ is one of the complex changes that occurs in the aged circadian clock.


Author(s):  
Jiří Sedlo ◽  
Pavel Tomšík

The paper describes strategic changes in the structure of grapevine (Vitis vinifera L.) varieties grown in the Czech Republic. In 2004–2005, (i.e. after the admission of the Czech Republic into the EU) expenditures associated with restructuralisation and transformation of vineyards amounted for CZK 25,423 thous. The authors examine the development taking place in this domain within the last 50 years (i.e. from 1960 to 2010) and pay detailed attention to the period of 1989 to 2010. The paper analyses reasons of these changes and tries to describe the future development expected after 2010. The current production potential of the Czech Republic are 19,633.45 hectares of vineyards. For the time being, there are in average 1.07 wine growers per hectare of vineyards. As compared with 1960, the acreage of vineyards has doubled up and the number of the most frequent varieties has also increased. Within the period of 1989–1990, four varieties (i.e. Müller Thurgau, Green Veltliner, Italian Riesling and Sankt Laurent) occupied more than 60 % of the total vineyards area in the Czech Republic, whereas at present there are altogether 8 varieties (Müller Thurgau, Green Veltliner, Italian Riesling, Rhein Riesling, Sauvignon, Sankt Laurent, Blaufrankish, and Zweigeltrebe) at the nearly the same acreage.As far as the percentages of Müller Thurgau, Green Veltliner, Italian Riesling and Sankt Laurent varieties is concerned, it is anticipated that their acreages will further decrease, whereas those of Rhein Riesling, Sauvignon, Blaufrankish and Zweigeltrebe are expected to grow. The industry is under pressure of all Porter’s five forces of competition from external sources.


2000 ◽  
Vol 192 (9) ◽  
pp. 1365-1372 ◽  
Author(s):  
Frances N. Karanu ◽  
Barbara Murdoch ◽  
Lisa Gallacher ◽  
Dongmei M. Wu ◽  
Masahide Koremoto ◽  
...  

The Notch ligand, Jagged-1, plays an essential role in tissue formation during embryonic development of primitive organisms. However, little is known regarding the role of Jagged-1 in the regulation of tissue-specific stem cells or its function in humans. Here, we show that uncommitted human hematopoietic cells and cells that comprise the putative blood stem cell microenvironment express Jagged-1 and the Notch receptors. Addition of a soluble form of human Jagged-1 to cultures of purified primitive human blood cells had modest effects in augmenting cytokine-induced proliferation of progenitors. However, intravenous transplantation of cultured cells into immunodeficient mice revealed that human (h)Jagged-1 induces the survival and expansion of human stem cells capable of pluripotent repopulating capacity. Our findings demonstrate that hJagged-1 represents a novel growth factor of human stem cells, thereby providing an opportunity for the clinical utility of Notch ligands in the expansion of primitive cells capable of hematopoietic reconstitution.


2019 ◽  
Vol 297 ◽  
pp. 124921 ◽  
Author(s):  
Joshua Godshaw ◽  
Anna K. Hjelmeland ◽  
Jerry Zweigenbaum ◽  
Susan E. Ebeler

Sign in / Sign up

Export Citation Format

Share Document