scholarly journals Purwarupa dan Kinerja Pengering Gabah Hybrid Solar Heating dan Photovoltaic Heater dengan Sistem Monitoring Suhu

2020 ◽  
Vol 12 (1) ◽  
pp. 24-32
Author(s):  
Usman Usman ◽  
Akhyar Muchtar ◽  
Umar Muhammad ◽  
Nunik Lestari

Grain drying is a process to reduce grain moisture content to certain conditions, so the grain can last longer in storage. The grain dryer model used in this research was Indirect Type Solar Dryer (ITSD). In order to make this dryer can work at night, heating element that used electrical energy from solar panels was added. This energy is a renewable and environmentally friendly energy. This dryer was equipped with a temperature monitoring system and control of the photovoltaic heater. The results of temperature monitoring and voltage sensors to controlling photovoltaic heaters based on validation are categorized as work measurement tools, because they have an error of 0.5% – 2%. Whereas the relay works when the battery voltage is 11 - 10.9 V. This dryer can dry grain to reach a moisture content of 14.90% from initial  moisture content of 48.46%. The drying process lasts for 11 hours, which is 7 hours using solar energy and 4 hours using photovoltaic heaters. The average temperature produced by dryer system during the drying process is 35.28 °C with a drying efficiency of 60.14%.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
S. Syahrul ◽  
M. Mirmanto ◽  
S. Romdani ◽  
S. Sukmawaty

Grain processing does not meet the actual grain harvests. This is due to the unsuitable drying process. Milling grain entrepreneurs and farmers in Indonesia are currently conducting a drying process under the sun. Based on the National Standards Body (BSN), grain moisture content must be at 14% to maintain the grain at high qualities. The purpose of this study is to determine the effect of velocity and grain mass variations on drying times. The grain used in this study contains an initial moisture content of 22% ± 0.5%. The grain is dried by inserting it into the drying chamber and varying the air velocities and grain mass. The air velocities used are 4 m/s, 5 m/s, 6 m/s and the variations of the grain mass are 1 kg 2 kg and 3 kg. The results show that increasing the air velocity decreases the drying time. On the other hand, when the grain mass is increased, the drying time elevates. The air velocity and mass of the grain that results in the fastest drying time are 6 m/s and 2 kg. The time required for achieving the water content of 13.6% is 30 menit. At the air velocity of 4 m/s, and the grain masses of 1 kg, 2 kg, and 3 kg, to achieve moisture contents of 13.4%, 13.5% and 13.4% the drying time needs 50 minutes.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1590 ◽  
Author(s):  
Angelo Del Giudice ◽  
Andrea Acampora ◽  
Enrico Santangelo ◽  
Luigi Pari ◽  
Simone Bergonzoli ◽  
...  

Drying is a critical point for the exploitation of biomass for energy production. High moisture content negatively affects the efficiency of power generation in combustion and gasification systems. Different types of dryers are available however; it is known that rotary dryers have low cost of maintenance and consume 15% and 30% less in terms of specific energy. The study analyzed the drying process of woody residues using a new prototype of mobile rotary dryer cocurrent flow. Woodchip of poplar (Populus spp.), black locust (Robinia pseudoacacia L.), and grapevine (Vitis vinifera L.) pruning were dried in a rotary drier. The drying cycle lasted 8 h for poplar, 6 h for black locust, and 6 h for pruning of grapevine. The initial biomass had a moisture content of around 50% for the poplar and around 30% for grapevine and black locust. The study showed that some characteristics of the biomass (e.g., initial moisture content, particle size distribution, bulk density) influence the technical parameters (i.e., airflow temperature, rate, and speed) of the drying process and, hence, the energy demand. At the end of the drying process, 17% of water was removed for poplar wood chips and 31% for grapevine and black locust wood chips. To achieve this, result the three-biomass required 1.61 (poplar), 0.86 (grapevine), and 1.12 MJ kgdry solids−1 (black locust), with an efficiency of thermal drying (η) respectively of 37%, 12%, and 27%. In the future, the results obtained suggest an increase in the efficiency of the thermal insulation of the mobile dryer, and the application of the mobile dryer in a small farm, for the recovery of exhaust gases from thermal power plants.


Horticulturae ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 40
Author(s):  
Vincenzo Alfeo ◽  
Diego Planeta ◽  
Salvatore Velotto ◽  
Rosa Palmeri ◽  
Aldo Todaro

Solar drying and convective oven drying of cherry tomatoes (Solanum lycopersicum) were compared. The changes in the chemical parameters of tomatoes and principal drying parameters were recorded during the drying process. Drying curves were fitted to several mathematical models, and the effects of air temperature during drying were evaluated by multiple regression analyses, comparing to previously reported models. Models for drying conditions indicated a final water content of 30% (semidry products) and 15% (dry products) was achieved, comparing sun-drying and convective oven drying at three different temperatures. After 26–28 h of sun drying, the tomato tissue had reached a moisture content of 15%. However, less drying time, about 10–11 h, was needed when starting with an initial moisture content of 92%. The tomato tissue had high ORAC and polyphenol content values after convective oven drying at 60 °C. The dried tomato samples had a satisfactory taste, color and antioxidant values.


BioResources ◽  
2013 ◽  
Vol 8 (3) ◽  
Author(s):  
Erzsébet Cserta ◽  
Gergely Hegedűs ◽  
Gergely Agócs ◽  
Róbert Németh

Author(s):  
Kobra Tajaddodi Talab ◽  
Mohd. Nordin Ibrahim ◽  
Sergey Spotar ◽  
Rosnita A. Talib ◽  
Kharidah Muhammad

Abstract Glass transition temperatures (Tg) of MR219 rice variety were measured by differential scanning calorimeter (DSC). State diagram was developed and used to evaluate drying process in this study. Glass transition temperatures range of 9.65- 61.79°C were observed for gains with moisture content of 26.8 – 7.4% (w.b.). For mechanical properties and milling test, statistical analysis was performed by using a two factor experiment in completely randomized design (CRD). Two selected factors were drying temperatures at 5 levels (40, 45, 50, 55, and 60°C) and final moisture content (FMC) at 4 levels (10-10.5, 11-11.5, 12-12.5 and 13-13.5%). Three–point bending test was applied to measure the mechanical properties of rice kernel. Generally, bending strength, apparent modulus of elasticity and fracture energy of brown rice kernel increased with decreasing the grain moisture content. Maximum bending strength was 35.69 and 33.64 MPa for 55, and 60°C, respectively. All samples that were dried at 55 and 60°C experienced to go through the glass transition line after reaching their temperature to the room temperature at the end of drying process. The effect of drying temperature, paddy FMC and their interactions on whole kernel percentage (WKP) and mechanical properties were significant (α = 0.05). An inverse relationship was observed between WKP and the percentage of strong kernels for all treatments.


Author(s):  
Viktor Shvidia ◽  
◽  
Serhii Stepanenko ◽  

In the article, a drying scheme in a tower grain dryer has been developed, equations for the conservation of energy and material balance for grain, equations for mass transfer and heat transfer between the drying agent and grain have been drawn up. On their basis, analytical dependences of changes in the temperature and moisture content of grain, moisture content and temperature of the drying agent along and in the width of the drying channel were obtained, depending on the operating parameters (the value of rarefaction in the drying channel, the speed of grain movement along the drying channel, the speed of movement of the drying agent, the initial temperatures of the grain and drying agent, initial moisture content of grain, as well as initial moisture content of drying agent). Their analysis facilitates the work in choosing the optimal mode. The developed analytical dependences of changes in the main drying parameters (moisture and temperature of grain, moisture content and temperature of the drying agent) along the length and width of the drying channel in tower dryers with suction air flow make it possible to link the main operating parameters, which facilitate the choice of rational drying modes.


1973 ◽  
Vol 187 (1) ◽  
pp. 591-599
Author(s):  
J. F. T. MacLaren ◽  
A. A. Nicol ◽  
R. Wallace

Contact drying of fabric was studied using a two-roll steam-heated laundry calender. The effects on heat and mass transfer of steam temperature, fabric initial moisture content, fabric velocity, contact pressure and steam-side heat transfer coefficient were observed experimentally. Bed and roller surface temperature profiles were measured to assist in interpreting and subsequently analysing the drying process. The experimental results were correlated using dimensionless parameters derived from a dimensional analysis of a drying equation. An empirical expression was obtained that related the final moisture content of the fabric to the initial moisture content and the other pertinent physical variables.


2018 ◽  
Vol 12 (4) ◽  
pp. 29-34
Author(s):  
S. A. Pavlov ◽  
T. F. Frolova

Mine and column grain dryers are a fairly complex object of control in the production line. The process of grain drying is characterized  by a large number of parameters, quantitatively and qualitatively characterizing the dryer operation. First of all, this includes the criteria of maximum performance and minimum deviations of the moisture content of the dried grain from the standard values. These criteria, as studies show, are interconnected with each other: an increase in the performance П of the dryer leads to an increase in the moisture content of the grain coming out of it, and, conversely, an attempt to reduce the moisture content of grain causes the need to reduce the performance П. (Research purpose) The research purpose is to develop the expression for the transfer functions of the of grain flow control depending on perturbations of the initial moisture content and the maximum grain temperature, as well as to conduct experimental studies. (Materials and methods) The authors have developed simplified mathematical models of moisture perturbation compensation of grain coming in for drying and its heating temperature in a drying chamber by changing the dryer performance on the basis of theoretical-and-experimental studies. (Results and discussion). The authors  have obtained  expressions to control the process performance when the current humidity and temperature change through the dryer performance parameters as a function of grain moisture flow and heat used to grain heating up to an acceptable temperature. Farm tests of developed transition management functions have been implemented for dryer SZT-16 controlled by PLC S7-1200 Siemens and operating in an automatic mode. Tests have been conducted on the “Babachev” farm, Karachev district of the Bryansk region in the process of drying food wheat grain. (Conclusion) It has been confirmed that the dryer performance is determined not only by the rated capacity but also by the deviation of the current moisture content of grain from the specified values and by the ratio of the amount of heat used for evaporating and heating. The dryer performance at constant initial humidity is determined by its rated performance, the maximum specified difference of grain temperatures, as well as the ratio of the amounts of heat used for evaporating and heating.


2020 ◽  
Vol 50 (1) ◽  
pp. 79-86
Author(s):  
Elena Verboloz ◽  
Marina Ivanova ◽  
Vera Demchenko ◽  
Sergey Fartukov ◽  
Nikita Evona

Introduction. Rose hips are rich in macro- and micronutrients. Unfortunately, heat treatment destroys most nutrients. Ultrasonic technologies make it possible to reduce the drying time and lower the temperature regime. The research objective was to adjust ultrasound technology to rose hip production in order to reduce the loss of vitamins and improve the quality indicators of the dried product. Study objects and methods. The research featured rose hips of the Rosa canina species collected in the south of Kazakhstan. This subspecies of wild rose is poor in vitamin C. Nevertheless, this shrub is extremely common in Russia and other countries of the Commonwealth of Independent States. The raw material was dried according to standard methods. One group of samples was treated with ultrasound, while the other served as control. Both groups underwent a sensory evaluation and were tested for moisture and vitamin C. Results and discussion. The rose hips were dried in a combination steam oven with a built-in ultrasonic wave generator. The research revealed the following optimal parameters of the ultrasound drying process: frequency of ultrasonic vibrations – 22 kHz, processing time – 2.5 h, temperature in the combination steam oven – +56°C, initial moisture content – 30%. The resulting product met the requirements of State Standard. The loss of moisture was 57%. According to State Standard 1994-93, the initial moisture content should be 15% or less. Time decreased from 360 min to 160 min, and the initial moisture was 13%. The experiment confirmed the initial hypothesis that ultrasonic treatment improves the drying process by improving quality indicators and preserving vitamin C in raw materials using. Conclusion. Ultrasound treatment during moisture removal from rose hips provides a resource-saving technology that fulfills an economically and socially important function.


2018 ◽  
Vol 39 (6) ◽  
pp. 2821
Author(s):  
Wilker Alves Morais ◽  
Osvaldo Resende ◽  
Fernando Nobre Cunha ◽  
Vitor Marques Vidal ◽  
Nelmício Furtado da Silva ◽  
...  

Physical properties of soybean grains present differences as a function of cultivars and moisture content, with the correlation between physical properties. This study aimed to determine the characteristics related to the physical properties of grains with different moisture contents of three soybean cultivars. The experimental design was completely randomized design in a 3 × 6 factorial scheme with three replications, consisting of three soybean cultivars (6266 RSF IPRO, BMX Potência RR, and 14403Z6001) and six grain moisture contents (11, 13, 15, 17, 19, and 21% wb). Soybean grains presented an initial moisture content of 11.0, 11.0, and 10.8% wb, respectively for 6266 RSF IPRO, BMX Potência RR, and 14403Z6001. The other moisture contents were obtained by soaking in a BOD chamber maintained at 25 °C and 93% of relative humidity. We assessed volume, roundness, sphericity, surface area, volumetric shrinkage, and volumetric shrinkage rate. The data were submitted to the analysis of variance by the F-test (p < 0.05) and when significant, regression analysis was performed for grain moisture contents and the means of cultivars were compared by the Tukey’s test. Pearson’s correlation analysis was also carried out to represent the linearity between grain physical properties. The cultivar BMX Potência RR obtained the highest results for volume, roundness, sphericity, and surface area. Volume and surface area increased as the moisture content of soybean grains increased; the opposite was observed for roundness and sphericity. A linear increase in volumetric shrinkage was observed as moisture content increased. The values of the correlation coefficients of the linear regression models can be used to describe the relationships between physical properties.


Sign in / Sign up

Export Citation Format

Share Document