scholarly journals Markers of systemic inflammation in response to osmotic stimulus in healthy volunteers

2019 ◽  
Vol 8 (9) ◽  
pp. 1282-1287
Author(s):  
Clara Odilia Sailer ◽  
Sophia Julia Wiedemann ◽  
Konrad Strauss ◽  
Ingeborg Schnyder ◽  
Wiebke Kristin Fenske ◽  
...  

Osmotic stimulus or stress results in vasopressin release. Animal and human in vitro studies have shown that inflammatory parameters, such as interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α), increase in parallel in the central nervous system and bronchial, corneal or intestinal epithelial cell lines in response to osmotic stimulus. Whether osmotic stimulus directly causes a systemic inflammatory response in humans is unknown. We therefore investigated the influence of osmotic stimulus on circulatory markers of systemic inflammation in healthy volunteers. In this prospective cohort study, 44 healthy volunteers underwent a standardized test protocol with an osmotic stimulus leading into the hyperosmotic/hypernatremic range (serum sodium ≥150 mmol/L) by hypertonic saline infusion. Copeptin – a marker indicating vasopressin activity – serum sodium and osmolality, plasma IL-8 and TNF-α were measured at baseline and directly after osmotic stimulus. Median (range) serum sodium increased from 141 mmol/L (136, 147) to 151 mmol/L (145, 154) (P < 0.01), serum osmolality increased from 295 mmol/L (281, 306) to 315 mmol/L (304, 325) (P < 0.01). Median (range) copeptin increased from 4.3 pg/L (1.1, 21.4) to 28.8 pg/L (19.9, 43.4) (P < 0.01). Median (range) IL-8 levels showed a trend to decrease from 0.79 pg/mL (0.37, 1.6) to 0.7 pg/mL (0.4, 1.9) (P < 0.09) and TNF-α levels decreased from 0.53 pg/mL (0.11, 1.1) to 0.45 pg/mL (0.12, 0.97) (P < 0.036). Contrary to data obtained in vitro, circulating proinflammatory cytokines tend to or decrease in human plasma after osmotic stimulus. In this study, osmotic stimulus does not increase circulating markers of systemic inflammation.

2017 ◽  
Vol 313 (5) ◽  
pp. R572-R582 ◽  
Author(s):  
Elizabeth A. Flatow ◽  
Evilin N. Komegae ◽  
Monique T. Fonseca ◽  
Camila F. Brito ◽  
Florin M. Musteata ◽  
...  

To elucidate the role of leptin in acute systemic inflammation, we investigated how its infusion at low, physiologically relevant doses affects the responses to bacterial lipopolysaccharide (LPS) in rats subjected to 24 h of food deprivation. Leptin was infused subcutaneously (0–20 μg·kg−1·h−1) or intracerebroventricularly (0–1 μg·kg−1·h−1). Using hypothermia and hypotension as biomarkers of systemic inflammation, we identified the phase extending from 90 to 240 min post-LPS as the most susceptible to modulation by leptin. In this phase, leptin suppressed the rise in plasma TNF-α and accelerated the recoveries from hypothermia and hypotension. Suppression of TNF-α was not accompanied by changes in other cytokines or prostaglandins. Leptin suppressed TNF-α when infused peripherally but not when infused into the brain. Importantly, the leptin dose that suppressed TNF-α corresponded to the lowest dose that limited food consumption; this dose elevated plasma leptin within the physiological range (to 5.9 ng/ml). We then conducted in vitro experiments to investigate whether an action of leptin on macrophages could parallel our in vivo observations. The results revealed that, when sensitized by food deprivation, LPS-stimulated peritoneal macrophages can be inhibited by leptin at concentrations that are lower than those reported to promote cytokine release. It is concluded that physiological levels of leptin do not exert a proinflammatory effect but rather an anti-inflammatory effect involving selective suppression of TNF-α via an action outside the brain. The mechanism of this effect might involve a previously unrecognized, suppressive action of leptin on macrophage subpopulations sensitized by food deprivation, but future studies are warranted.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3212 ◽  
Author(s):  
Raffaela Fuccelli ◽  
Roberto Fabiani ◽  
Patrizia Rosignoli

Hydroxytyrosol (3,4-dihydroxyphenil-ethanol, HT), the major phenol derived from olive oil consumption, has shown different anti-inflammatory and anti-oxidant activities in vitro which may explain the chronic-degenerative diseases preventive properties of olive oil. The aim of this study was to examine the ability of HT reduce inflammatory markers, Cyclooxygenase-2 (COX2) and Tumour Necrosis Factor alfa (TNF-α and oxidative stress in vivo on a mouse model of systemic inflammation. Balb/c mice were pre-treated with HT (40 and 80 mg/Kg b.w.) and then stimulated by intraperitoneal injection of lipopolysaccharide (LPS). Blood was collected to measure COX2 gene expression by qPCR and TNF-α level by ELISA kit in plasma. In addition, the total anti-oxidant power of plasma and the DNA damage were measured by FRAP test and COMET assay, respectively. LPS increased the COX2 expression, the TNF-α production and the DNA damage. HT administration prevented all LPS-induced effects and improved the anti-oxidant power of plasma. HT demonstrated in vivo anti-inflammatory and anti-oxidant abilities. The results may explain the health effects of olive oil in Mediterranean diet. HT represents an interesting molecule for the development of new nutraceuticals and functional food useful in chronic diseases prevention.


2012 ◽  
Vol 50 (08) ◽  
Author(s):  
M Gluth ◽  
C Weber ◽  
H Mukai ◽  
D Baumgart ◽  
J Turner ◽  
...  
Keyword(s):  

2019 ◽  
Vol 14 (3) ◽  
pp. 203-208
Author(s):  
Evan Noori Hameed ◽  
Haydar F. Hadi AL Tukmagi ◽  
Hayder Ch Assad Allami

Background: Inadequate response to Erythropoietin Stimulating Agents (ESA) despite using relatively larger doses regimen represents a potential risk factor of Cardiovascular (CV) related mortality in addition to health-care economic problems in anemic patients with Chronic Kidney Disease (CKD). Erythropoietin (EPO) hyporesponsiveness related to inflammation has been increased progressively. Melatonin is well known as a potent anti-inflammatory agent. Therefore, the current study was designed to evaluate whether melatonin could improve anemic patients response to EPO. Methods: This single controlled clinical study was carried out in 41 CKD patients with hemoglobin (Hb) levels less than 11g/dl divided randomly in a 1:1 ratio into 2 groups; treatment group who received 5mg melatonin plus their regular treatments and control group who received their regular treatments only. Hematological and iron status parameters include Hb level, serum iron (S. iron), Transferrin Saturation Ratio (TSAT) and serum ferritin (S. ferritin) in addition to inflammatory parameters that include tissue necrotic factor alfa (TNF-α), interleukin-1beta (IL-1β) and interleukin-6 (IL-6) determined before and after 12 weeks of treatment. Results: Melatonin remarkably increases the Hb level with a significant increase in S. iron and TSAT compared to baseline. The elevation of S. iron and TSAT was significantly higher in the melatonin group. Additionally, all inflammatory markers estimated were reduced significantly by melatonin compared to base line and control group. Conclusion: The results of the current study showed that melatonin has an advantageous effect on improving EPO response in anemic patients with CKD.


Author(s):  
Fatih Öner Kaya ◽  
Yeşim Ceylaner ◽  
Belkız Öngen İpek ◽  
Zeynep Güneş Özünal ◽  
Gülbüz Sezgin ◽  
...  

Aims: The etiopathogenesis of Rheumatoid Arthritis (RA) is not clearly understood. However, the role of the cytokines takes an important part in this mechanism. We aimed to bring a new approach to the concept of 'remission' in patients with RA. Background: RA is a chronic, autoimmune, inflammatory disease that involves small joints in the form of symmetrical polyarthritis and progresses with exacerbations and remissions. Pain, swelling, tenderness and morning stiffness are typical of the joints involved. Although it is approached as a primary joint disease, a wide variety of extra-articular involvements may also occur. It is an interesting pathophysiological process, the exact cause of which is still unknown, with many environmental, genetic and potentially undiscovered possible factors in a chaotic manner. Objective: In this cross-sectional study, sedimentation rate (ESR), C- Reactive protein (CRP), Tumor necrosis factor (TNF)-α, soluble-TNF-α receptor (TNF-R), Interleukin (IL)-1B and IL-10 were measured in three groups which were healthy volunteers, patients with RA in the active period, and patients with RA in remission. Disease activity score-28 (DAS-28) was calculated in active RA and RA in remission. Methods: This study included 20 healthy volunteers, 20 remission patients with RA and 20 active RA patients. Venous blood samples were collected from patients in both healthy and RA groups. Results: RA group consisted 43 (71.6%) female and 17 (28.4%) male. Control group consisted 11 (55%) female and 9 (45%) male. TNF-R was significantly high only in the active group according to the healthy group (p=0.002). IL-10 was significantly high in active RA according to RA in remission (p=0.03). DAS-28 was significantly high in active RA according to RA in remission (p=0.001). In the active RA group, ESR and TNF-R had a positive correlation (r:0.442; p=0.048). In the active RA group, there was also a positive correlation between TNF-R and CRP (r:0.621; p=0,003). Both healthy and active RA group had significant positive correlation between ESR and CRP (r: 0.481; p=0.032 and r: 0,697; p=0,001 respectively). Conclusion: TNF-R can be the main pathophysiological factor and a marker showing activation. TNF-R can be very important in revealing the effect of TNF on the disease and the value of this effect in the treatment and ensuring the follow-up of the disease with CRP instead of ESR in activation.


Author(s):  
Reza Afrisham ◽  
Sahar Sadegh-Nejadi ◽  
Reza Meshkani ◽  
Solaleh Emamgholipour ◽  
Molood Bagherieh ◽  
...  

Introduction: Obesity is a disorder with low-grade chronic inflammation that plays a key role in the hepatic inflammation and steatosis. Moreover, there are studies to support the role of exosomes in the cellular communications, the regulation of metabolic homeostasis and immunomodulatory activity. Accordingly, we aimed to evaluate the influence of plasma circulating exosomes derived from females with normal-weight and obesity on the secretion of inflammatory cytokines in human liver cells. Methods: Plasma circulating exosomes were isolated from four normal (N-Exo) and four obese (O-Exo) women. The exosomes were characterized and approved for CD63 expression (common exosomal protein marker) and morphology/size using the western blot and TEM methods, respectively. The exosomes were used for stimulation of HepG2 cells in vitro. After 24 h incubation, the protein levels of TNF-α,IL-6, and IL-1β were measured in the culture supernatant of HepG2 cells using the ELISA kit. Results: The protein levels of IL-6 and TNF-α in the cells treated with O-Exo and N-Exo reduced significantly in comparison with control group (P=0.039 and P<0.001 respectively), while significance differences were not found between normal and obese groups (P=0.808, and P=0.978 respectively). However, no significant differences were found between three groups in term of IL-1β levels (P=0.069). Based on the correlation analysis, the protein levels of IL-6 were positively correlated with TNF-α (r 0.978, P<0.001). Conclusion: These findings suggest that plasma circulating exosomes have probably anti-inflammatory properties independently from body mass index and may decrease the secretion of inflammatory cytokines in liver. However, further investigations in vitro and in vivo are needed to address the anti-inflammatory function of N-Exo and O-Exo in human liver cells and/or other cells.


2019 ◽  
Vol 98 (12) ◽  
pp. 1386-1396 ◽  
Author(s):  
X. Hong ◽  
S.N. Min ◽  
Y.Y. Zhang ◽  
Y.T. Lin ◽  
F. Wang ◽  
...  

IgG4-related sialadenitis (IgG4-RS) is a newly recognized immune-mediated systemic fibroinflammatory disease that affects salivary glands and leads to hyposalivation. Tumor necrosis factor–α (TNF-α) is a critical proinflammatory cytokine involved in several salivary gland disorders, but its role and mechanism regarding acinar cell injury in IgG4-RS are unknown. Here, we found that TNF-α level was significantly increased in serum and submandibular gland (SMG) of patients and that serum TNF-α level was negatively correlated with saliva flow rate. Ultrastructural observations of IgG4-RS SMGs revealed accumulation of large autophagic vacuoles, as well as dense fibrous bundles, decreased secretory granules, widened intercellular spaces, swollen mitochondria, and expanded endoplasmic reticulum. Expression levels of LC3 and p62 were both increased in patients’ SMGs. TNF-α treatment led to elevated levels of LC3II and p62 in both SMG-C6 cells and cultured human SMG tissues but did not further increase their levels when combined with bafilomycin A1 treatment. Moreover, transfection of Ad-mCherry-GFP-LC3B in SMG-C6 cells confirmed the suppression of autophagic flux after TNF-α treatment. Immunofluorescence imaging revealed that costaining of LC3 and the lysosomal marker LAMP2 was significantly decreased in patients, TNF-α–treated SMG-C6 cells, and cultured human SMGs, indicating a reduction in autophagosome-lysosome fusion. Furthermore, the ratio of pro/mature cathepsin D was elevated in vivo, ex vivo, and in vitro. TNF-α also appeared to induce abnormal acidification of lysosomes in acinar cells, as assessed by lysosomal pH and LysoTracker DND-26 fluorescence intensity. In addition, TNF-α treatment induced transcription factor EB (TFEB) redistribution in SMG-C6 cells, which was consistent with the changes observed in IgG4-RS patients. TNF-α increased the phosphorylation of extracellular signal–regulated kinase (ERK) 1/2, and inhibition of ERK1/2 by U0126 reversed TNF-α–induced TFEB redistribution, lysosomal dysfunction, and autophagic flux suppression. These findings suggest that TNF-α is a key cytokine related to acinar cell injury in IgG4-RS through ERK1/2-mediated autophagic flux suppression.


2021 ◽  
pp. 1-17
Author(s):  
Stefan Bernhard ◽  
Stefan Hug ◽  
Alexander Elias Paul Stratmann ◽  
Maike Erber ◽  
Laura Vidoni ◽  
...  

A sufficient response of neutrophil granulocytes stimulated by interleukin (IL)-8 is vital during systemic inflammation, for example, in sepsis or severe trauma. Moreover, IL-8 is clinically used as biomarker of inflammatory processes. However, the effects of IL-8 on cellular key regulators of neutrophil properties such as the intracellular pH (pH<sub>i</sub>) in dependence of ion transport proteins and during inflammation remain to be elucidated. Therefore, we investigated in detail the fundamental changes in pH<sub>i</sub>, cellular shape, and chemotactic activity elicited by IL-8. Using flow cytometric methods, we determined that the IL-8-induced cellular activity was largely dependent on specific ion channels and transporters, such as the sodium-proton exchanger 1 (NHE1) and non-NHE1-dependent sodium flux. Exposing neutrophils in vitro to a proinflammatory micromilieu with N-formyl-Met-Leu-Phe, LPS, or IL-8 resulted in a diminished response regarding the increase in cellular size and pH. The detailed kinetics of the reduced reactivity of the neutrophil granulocytes could be illustrated in a near-real-time flow cytometric measurement. Last, the LPS-mediated impairment of the IL-8-induced response in neutrophils was confirmed in a translational, animal-free human whole blood model. Overall, we provide novel mechanistic insights for the interaction of IL-8 with neutrophil granulocytes and report in detail about its alteration during systemic inflammation.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 868
Author(s):  
Fabiana Albani Zambuzi ◽  
Priscilla Mariane Cardoso-Silva ◽  
Ricardo Cardoso Castro ◽  
Caroline Fontanari ◽  
Flavio da Silva Emery ◽  
...  

Decitabine is an approved hypomethylating agent used for treating hematological malignancies. Although decitabine targets altered cells, epidrugs can trigger immunomodulatory effects, reinforcing the hypothesis of immunoregulation in treated patients. We therefore aimed to evaluate the impact of decitabine treatment on the phenotype and functions of monocytes and macrophages, which are pivotal cells of the innate immunity system. In vitro decitabine administration increased bacterial phagocytosis and IL-8 release, but impaired microbicidal activity of monocytes. In addition, during monocyte-to-macrophage differentiation, treatment promoted the M2-like profile, with increased expression of CD206 and ALOX15. Macrophages also demonstrated reduced infection control when exposed to Mycobacterium tuberculosis in vitro. However, cytokine production remained unchanged, indicating an atypical M2 macrophage. Furthermore, when macrophages were cocultured with lymphocytes, decitabine induced a reduction in the release of inflammatory cytokines such as IL-1β, TNF-α, and IFN-γ, maintaining IL-10 production, suggesting that decitabine could potentialize M2 polarization and might be considered as a therapeutic against the exacerbated immune response.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


Sign in / Sign up

Export Citation Format

Share Document