scholarly journals Ultrastructural characteristics and immune profile of equine MSCs from fetal adnexa

Reproduction ◽  
2017 ◽  
Vol 154 (4) ◽  
pp. 509-519 ◽  
Author(s):  
Eleonora Iacono ◽  
Luisa Pascucci ◽  
Barbara Rossi ◽  
Cinzia Bazzucchi ◽  
Aliai Lanci ◽  
...  

Both in human and equine species, mesenchymal stem cells (MSCs) from amniotic membrane (AM) and Wharton’s jelly (WJ), may be particularly useful for immediate use or in later stages of life, after cryopreservation in cell bank. The aim of this study was to compare equine AM- and WJ-MSCs in vitro features that may be relevant for their clinical employment. MSCs were more easily isolated from WJ, even if MSCs derived from AM exhibited more rapid proliferation (P < 0.05). Osteogenic and chondrogenic differentiation were more prominent in MSCs derived from WJ. This is also suggested by the lower adhesion of AM cells, demonstrated by the greater volume of spheroids after hanging drop culture (P < 0.05). Data obtained by PCR confirmed the immunosuppressive function of AM and WJ-MSCs and the presence of active genes specific for anti-inflammatory and angiogenic factors (IL-6, IL 8, IL-β1). For the first time, by means of transmission electron microscopy (TEM), we ascertained that equine WJ-MSCs constitutively contain a very impressive number of large vesicular structures, scattered throughout the cytoplasm. Moreover, an abundant extracellular fibrillar matrix was located in the intercellular spaces among WJ-MSCs. Data recorded in this study reveal that MSCs from different fetal tissues have different characteristics that may drive their therapeutic use. These finding could be noteworthy for horses as well as for other mammalian species, including humans.

2020 ◽  
Vol 9 (1) ◽  
pp. 416-428 ◽  
Author(s):  
Raghad R. Alzahrani ◽  
Manal M. Alkhulaifi ◽  
Nouf M. Al-Enazi

AbstractThe adaptive nature of algae results in producing unique chemical components that are gaining attention due to their efficiency in many fields and abundance. In this study, we screened the phytochemicals from the brown alga Hydroclathrus clathratus and tested its ability to produce silver nanoparticles (AgNPs) extracellularly for the first time. Lastly, we investigated its biological activity against a variety of bacteria. The biosynthesized nanoparticles were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and energy-dispersive spectroscopy. The biological efficacy of AgNPs was tested against eighteen different bacteria, including seven multidrug-resistant bacteria. Phytochemical screening of the alga revealed the presence of saturated and unsaturated fatty acids, sugars, carboxylic acid derivatives, triterpenoids, steroids, and other components. Formed AgNPs were stable and ranged in size between 7 and 83 nm and presented a variety of shapes. Acinetobacter baumannii, Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), and MDR A. baumannii were the most affected among the bacteria. The biofilm formation and development assay presented a noteworthy activity against MRSA, with an inhibition percentage of 99%. Acknowledging the future of nano-antibiotics encourages scientists to explore and enhance their potency, notably if they were obtained using green, rapid, and efficient methods.


Reproduction ◽  
2009 ◽  
Vol 138 (2) ◽  
pp. 247-255 ◽  
Author(s):  
A Nation ◽  
L Selwood

A model marsupial culture system has been developed whereby individual primary follicles, obtained from adult ovaries, can be grown in vitro to the antral stage and oocytes retrieved from these follicles can achieve nuclear maturation (metaphase II) in the presence of LH. Primary follicles isolated from adult Sminthopsis macroura ovaries were cultured individually in one of four systems: microdrops under oil, upright, inverted, or roller culture. After 6 days of culture, cumulus–oocyte complexes (COCs) were excised from early antral follicles and incubated for an additional 24 h to assess meiotic competence and the effects of LH and lithium on oocyte maturation. Histology and transmission electron microscopy established normal in vivo standards and verified oocyte and follicular integrity following culture. On day 6 of culture, follicle viability was significantly greater in the inverted system (73%) than in the other three systems (10–46%). The inverted system was the most effective in supporting development with follicles demonstrating progressive growth during culture and showing antral signs by day 4. Meiotic resumption during COC culture was facilitated by LH, but hindered by lithium. The ability to resume meiosis and progress to metaphase II was equivalent in oocytes retrieved following follicle culture and those matured in vivo. This study highlights the importance of oxygen and nutrient availability during marsupial follicle culture, and demonstrates for the first time that primary follicles isolated from adult mammalian ovaries can undergo normal growth and development in vitro, to produce mature, meiotically competent oocytes.


Marine Drugs ◽  
2018 ◽  
Vol 16 (8) ◽  
pp. 277 ◽  
Author(s):  
Xiangyan Chen ◽  
Xia Zhao ◽  
Yanyun Gao ◽  
Jiaqi Yin ◽  
Mingyue Bai ◽  
...  

Gold nanoparticles (AuNPs) have been widely used in catalysis, photothermal therapy, and targeted drug delivery. Carrageenan oligosaccharide (CAO) derived from marine red algae was used as a reducing and capping agent to obtain AuNPs by an eco-friendly, efficient, and simple synthetic route for the first time. The synthetic conditions of AuNPs were optimized by response surface methodology (RSM), and the CAO-AuNPs obtained were demonstrated to be ellipsoidal, stable and crystalline by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The CAO-AuNPs showed localized surface plasmon resonance (LSPR) oscillation at about 530 nm with a mean diameter of 35 ± 8 nm. The zeta potential of CAO-AuNPs was around −20 mV, which was related to the negatively charged CAO around AuNPs. The CAO-AuNPs exhibited significant cytotoxic activities to HCT-116 and MDA-MB-231 cells, which could be a promising nanomaterial for drug delivery.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Weili Xie ◽  
Qi Xie ◽  
Meishan Jin ◽  
Xiaoxiao Huang ◽  
Xiaodong Zhang ◽  
...  

Silicon carbide (SiC), a compound of silicon and carbon, with chemical formula SiC, the beta modification (β-SiC), with a zinc blende crystal structure (similar to diamond), is formed at temperature below1700∘C.β-SiC will be the most suitable ceramic material for the future hard tissue replacement, such as bone and tooth. Thein vitrocytotoxicity ofβ-SiC nanowires was investigated for the first time. Our results indicated that 100 nm long SiC nanowires could significantly induce the apoptosis in MC3T3-E1 cells, compared with 100 μm long SiC nanowires. And 100 nm long SiC nanowires increased oxidative stress in MC3T3-E1 cells, as determined by the concentrations of MDA (as a marker of lipid peroxidation) and 8-OHdG (indicator of oxidative DNA damage). Moreover, transmission electron microscopy (TEM) was performed to evaluate the morphological changes of MC3T3-E1 cells. After treatment with 100 nm long SiC nanowires, the mitochondria were swelled and disintegrated, and the production of ATP and the total oxygen uptake were also decreased significantly. Therefore,β-SiC nanowires may have limitations as medical material.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 121
Author(s):  
Federica Rey ◽  
Sara Ottolenghi ◽  
Toniella Giallongo ◽  
Alice Balsari ◽  
Carla Martinelli ◽  
...  

Existing therapies for Parkinson’s disease (PD) are only symptomatic. As erythropoietin (EPO) is emerging for its benefits in neurodegenerative diseases, here, we test the protective effect driven by EPO in in vitro (SH-SY5Y cells challenged by MPP+) and in vivo (C57BL/6J mice administered with MPTP) PD models. EPO restores cell viability in both protective and restorative layouts, enhancing the dopaminergic recovery. Specifically, EPO rescues the PD-induced damage to mitochondria, as shown by transmission electron microscopy, Mitotracker assay and PINK1 expression. Moreover, EPO promotes a rescue of mitochondrial respiration while markedly enhancing the glycolytic rate, as shown by the augmented extracellular acidification rate, contributing to elevated ATP levels in MPP+-challenged cells. In PD mice, EPO intrastriatal infusion markedly improves the outcome of behavioral tests. This is associated with the rescue of dopaminergic markers and decreased neuroinflammation. This study demonstrates cellular and functional recovery following EPO treatment, likely mediated by the 37 Kda isoform of the EPO-receptor. We report for the first time, that EPO-neuroprotection is exerted through restoring ATP levels by accelerating the glycolytic rate. In conclusion, the redox imbalance and neuroinflammation associated with PD may be successfully treated by EPO.


RSC Advances ◽  
2016 ◽  
Vol 6 (57) ◽  
pp. 52219-52226 ◽  
Author(s):  
Dan-dan Zhang ◽  
Zai-ji Zhan

The interface microstructure between the constituent phases in graphene/Cu composites, namely graphene plane–Cu (Dp) and graphene edges–Cu (De), were observed for the first time from the two directions by means of transmission electron microscopy.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 458
Author(s):  
Ismael Castelan-Ramírez ◽  
Lizbeth Salazar-Villatoro ◽  
Bibiana Chávez-Munguía ◽  
Citlaltepetl Salinas-Lara ◽  
Carlos Sánchez-Garibay ◽  
...  

Amoebae of the genus Acanthamoeba are etiological agents of granulomatous amoebic encephalitis (GAE). Recently, through an in vivo GAE model, Acanthamoeba trophozoites were immunolocalized in contact with the peripheral nervous system (PNS) cells—Schwann cells (SC). In this study, we analyzed in greater detail the in vitro early morphological events (1, 2, 3, and 4 h) during the interaction of A. culbertsoni trophozoites (ATCC 30171) with SC from Rattus norvegicus (ATCC CRL-2941). Samples were processed for scanning and transmission electron microscopy as well as confocal microscopy. After 1 h of interaction, amoebae were observed to be adhered to the SC cultures, emitting sucker-like structures associated with micro-phagocytic channels. In addition, evidence of necrosis was identified since edematous organelles as well as multivesicular and multilamellar bodies characteristics of autophagy were detected. At 2 h, trophozoites migrated beneath the SC culture in which necrosis and autophagy persisted. By 3 and 4 h, extensive lytic zones were observed. SC necrosis was confirmed by confocal microscopy. We reported for the first time the induction of autophagic and necrotic processes in PNS cells, associated in part with the contact-dependent pathogenic mechanisms of A. culbertsoni trophozoites.


1995 ◽  
Vol 347 (1320) ◽  
pp. 181-185 ◽  

For the first time it has become possible to study a ‘living fossil’ Laevipilina antarctica , a representative of the family Neopilinidae (Mollusca, M onoplacophora) by means of transmission electron microscopy. This led to the discovery of a bacterial symbiosis in the epidermis of the mantle roof and of the head of the animal. Bacteria with varying morphologies were found between the microvilli of the epidermal cells. In addition, modified and specialized epidermal cells (bacteriocytes) were detected in the mantle roof and the post-oral tentacles. In contrast, the sole of the foot and the alimentary tract of the animal are free of symbionts. The bacterial symbionts may be involved in the recycling of dissolved organic matter.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Guilherme Rabelo Coelho ◽  
Ronaldo Zucatelli Mendonça ◽  
Karina de Senna Vilar ◽  
Cristina Adelaide Figueiredo ◽  
Juliana Cuoco Badari ◽  
...  

The studies on chemical composition and biological activity of propolis had focused mainly on speciesApis melliferaL. (Hymenoptera: Apidae). There are few studies about the uncommon propolis collected by stingless bees of the Meliponini tribe known as geopropolis. The geopropolis fromScaptotrigona posticawas collected in the region of Barra do Corda, Maranhão state, Brazil. The chemical analysis of hydromethanolic extract of this geopropolis (HMG) was carried out through HPLC-DAD-ESI-MS/MS and the main constituents found were pyrrolizidine alkaloids and C-glycosyl flavones. The presence of alkaloids in extracts of propolis is detected for the first time in this sample. The antiviral activity of HMG was evaluated through viral DNA quantification experiments and electron microscopy experiments. Quantification of viral DNA from herpes virus showed reduction of about 98% in all conditions and concentration tested of the HMG extract. The results obtained were corroborated by transmission electron microscopy, in which the images did not show particle or viral replication complex. The antiviral activity of C-glycosyl flavones was reported for a variety of viruses, being observed at different points in the viral replication. This work is the first report about the antiviral activity of geopropolis fromScaptotrigona postica, in vitro, against antiherpes simplex virus (HSV).


2008 ◽  
Vol 53 (1) ◽  
Author(s):  
Jordi Miquel ◽  
Zdzisław Świderski ◽  
John Mackiewicz ◽  
Mohammed Ibraheem

AbstractThe ultrastructure of spermiogenesis in Wenyonia virilis Woodland, 1923, a caryophyllaeid cestode from the silurid Nile fish Synodontis schall (Bloch et Schneider, 1801), is described by means of transmission electron microscopy (TEM) for the first time. Spermiogenesis follows the characteristic caryophyllidean type and is initiated by the formation of a differentiation zone. This area, delimited at its base by a ring of arching membranes and bordered by cortical microtubules, contains two centrioles associated with typical striated rootlets with a reduced intercentriolar body between them. The apical area of the differentiation zone exhibits electron-dense material that is present only during the early stages of spermiogenesis. Only one of the centrioles develops into a free flagellum that grows at an angle of >90° in relation to the cytoplasmic extension. Spermiogenesis is also characterized by a flagellar rotation and a proximodistal fusion of the flagellum with the cytoplasmic extension. The most interesting features observed in W virilis are the presence of a reduced, very narrow intercentriolar body and the unique type of flagellar rotation >90°. Results are compared with those described in two caryophyllideans, Glaridacris catostomi Cooper, 1920 and Khawia armeniaca (Cholodkovski, 1915). Contrary to the original report of Świderski and Mackiewicz (2002), that flagellar rotation has never been observed in spermiogenesis of G. catostomi, re-assessment of their description and illustrations leads us to conclude that flagellar rotation must logically occur in that species. The value of various morphological features of sperm in phylogenetic inference is discussed.


Sign in / Sign up

Export Citation Format

Share Document