scholarly journals Production potential of photosynthesis in forest ecosystems of the low mountain Pokuttya (Ukrainian Carpathians)

2016 ◽  
Vol 24 (1) ◽  
pp. 15-25
Author(s):  
S. Y. Milevskaya

The aim of the study was testing on the example of a model region a method of estimation of the production potential of forest ecosystems and the consequences of anthropogenic changes there. The object of study is a typical Carpathian lower mountain forest in the basin of the river Lyuchka, an area of 14,806 ha. It has long undergone considerable agricultural transformations. Studies were based on cartographic modeling of modern anthropogenically transformed biogeocenotic cover using large scale satellite images. The main types of biogeocenotical cover were defined according to the altitudinal zonation of vegetation of the parts of the mountain terrain and the prevailing types of soil and hydrological conditions. For analytical procedures a database of materials describing the biometric features of the forests was created. It is possible to perform calculations of average and potential biometrical parameters of stands growing in different climatic, soil and hydrological conditions. The structure and the biological diversity of different vegetation types was determined by construction of mapping models of spatial structures of the basic types of biogeocenotic cover. The biological productivity of the main types of forest ecosystems was determined on base of the volume of timber stands. The mass of dry wood was determined taking into account its size and standard density of wood of different tree species. Calculation of the total volume of forest biomass was performed using the conversion factors of weight relative to the trunk timber volume. The mass of carbon deposited accounted for 50% of the total biomass. The average annual growth of biomass and carbon deposited was determined by dividing the volume of the stands by their average age. Calculation of phytocenosis consumed as a result of photosynthesis reaction of CO2, H2O and light energy was performed taking into account corresponding material and energy ratios. In general, in the course of one year the biogeocenotic cover of the model lowland area could deposit as a result of photosynthesis for the restoration of potential vegetation cover 43.3 ths. tons of carbon, while consuming 159 ths. t of CO2 and 65.2 ths. t of H2O and 1,724 ∙ 103 GJ of light energy, which is equivalent to 479 GW ∙ hour. During this process O2 – 115.7 ths. t would be emitted into the atmosphere. In terms of 1 hectare, this is equal to C – 2.92 t ∙ ha–1, CO2 – 10.7 t ∙ ha–1, H20 – 4.4 t ∙ha–1, O2 – 7.8 t ∙ ha–1, E – 116.4 GJ ∙ ha–1, which is equivalent to 32.3 MW ∙ h ∙ ha–1. The total production capacity of photosynthesis of the modern biogeocenotic cover model area is 38% of the potential. As a result, the energy loss is 20 MW ∙ h–1 ∙ ha–1 light energy to 1.9 t ∙ ha–1 less than the deposited carbon 6.7 t ∙ ha–1 less carbon dioxide used, 2.8 t ∙ ha–1 water is not used, 3.9 t ha–1 oxygen is not returned to the atmosphere. The large specific amount of unused resources of productivity of biogeocenotic cover, carbon dioxide, light energy, untranspired moisture in the air and unemitted oxygen can cause a significant impact on local climatic conditions. 

2021 ◽  
Vol 35 ◽  
pp. 00006
Author(s):  
Ainur Biembetov ◽  
Nur Yanybayev ◽  
Ilnar Valiev

Environmental monitoring of specially protected natural reservations in Russia makes it necessary to analyze periodically the parameters of natural reservations to identify the state of components of nature. The Bashkir Nature Reserve is located in the Southern Urals. The availability of materials on forest management in 1956, 1969, 1979, and 2016 is one of the special features of the scientific fund of the Bashkir Nature Reserve. The analysis of these materials showed stable positive dynamics of the development of coniferous and small-leaved deciduous forestry and its current state.


2021 ◽  
Vol 39 (3) ◽  
pp. 250-257
Author(s):  
Alessandro Dal’Col Lúcio ◽  
Maria Inês Diel ◽  
Bruno G Sari

ABSTRACT Biologically based growth models can be an alternative in identifying the productive response of multiple harvest vegetables. By interpreting the estimates of the parameters of the models, it is possible to estimate the total production, the rate of fruit production, and the moment when the crop reaches its maximum production potential. Besides, by estimating confidence intervals, these responses can be compared between genotypes or between different treatments. Therefore, the purpose of this manuscript is to present a literature review, and a detailed step-by-step, to interpreting the evolution of the production cycle of vegetables with multiple harvests crops based on non-linear regression. All the requirements that must be met in this type of analysis were presented in detail based on non-linear regression, providing the necessary steps for this type of analysis in details. Demonstration is given using data from strawberry cultivation along with the associated R scripts and interpretation of analysis output in material supplemental. This approach can allow for more relevant inferences than standard means analyses through better examination and modeling of the underlying biological processes.


2019 ◽  
Vol 8 (2) ◽  
Author(s):  
A.M.S.K. Abeysekara ◽  
S.K. Yatigammana ◽  
K.T. Premakantha

Carbon dioxide has gained lot of attention in recent past as a greenhouse gas, and therefore it has a potential to affect the climate pattern of the world. Several anthropogenic activities are known to be responsible for the increased level of carbon in the atmosphere and disruption of the global carbon cycle. However, nature has its own mechanism of sequestering and storing the carbon in its “reservoirs”. Forest has the ability to sequester carbon in their biomass and reduce the rate of increase of atmospheric carbon dioxide. The carbon sequestered in the forest trees are mostly referred to as the biomass of a tree or a forest. It has been identified five carbon pools of the terrestrial ecosystem, involving biomass. The study was designed to estimate biomass stock and then the carbon stock of the Udawattakele Forest Reserve (7°17'58 "N, 80°38'20’’E) in Kandy, Sri Lanka. Allometric equations were used to calculate biomass of trees. The total biomass stock was estimated to be 9475.56 t ha-1 (Mega gram-Mg) and the total carbon stock was estimated to be 4,453.55 t ha-1 (Mg) in the Udawattakele Forest Reserve (UFR). This amount is equivalent to 16,344.52 Mg of carbon dioxide in the atmosphere. UFR holds a moderate amount of biomass/carbon stock and the total carbon density of natural forest and plantations was found to be 36.55 Mg ha-1 and 44.89 Mg ha-1 respectively.


2017 ◽  
Vol 9 (10) ◽  
pp. 1
Author(s):  
S. M. Laurie ◽  
N. Nhlabatsi ◽  
H. M. Ngobeni ◽  
S. S. Tjale

Water scarcity affects both food security and human nutrition. In-field rain water harvesting (IRWH) combines the advantages of rainwater harvesting, no-till, basin tillage and mulching on high drought risk clay soils. In this study, the IRWH system was customized to fit the cropping system of orange-fleshed sweet potato (OFSP). Field trials were conducted over two seasons to compare cultivation of OFSP using IRWH versus conventional tillage (CON). Data collection included plant survival, root initiation, marketable root yield, unmarketable root yield classes and biomass. Planting OFSP using the IRWH system resulted in significantly higher total biomass, higher marketable and total root yield per plant, as well as larger number of roots per plant compared to CON. Despite the relatively higher yield, total production (t/ha) was only significantly higher in season two at 4.6 t/ha vs 2.7 t/ha for CON. Subsistence farmers and households in semi-arid areas may grow small plots of orange-fleshed sweet potato in IRWH opposed to only growing maize and in that way add vitamin A to the diet. This is the first study on the application of IRWH to produce OFSP under rainfed conditions, and more research can be conducted to expand the knowledge on application and benefits of IRWH for OFSP production.


2011 ◽  
Vol 57 (No. 11) ◽  
pp. 514-522 ◽  
Author(s):  
V. Mansfeld

The paper analyses the representation of Norway spruce (Picea abies [L.] Karst.) (hereinafter spruce) in relation to different conditions of forest sites. The analysis is based on data from the National Forest Inventory conducted in the Czech Republic in 2001-2004 (hereinafter NFI), stratified according to units of the Forest Site Classification System (Plíva 1971, 2000). Results of the analysis provide a structured image of the current share of spruce. The formerly published information on the natural share of spruce was corroborated and the recommended share of spruce in the target species composition of the spruce management system was analyzed. The analysis documents the applicability of NFI data in the technical discussion concerning the future form of forest ecosystems in the Czech Republic. The results can be used as the groundwork for concrete forest management decision-making and will contribute to the study of the biological diversity of forest ecosystems.


1992 ◽  
Vol 97 (D6) ◽  
pp. 6169 ◽  
Author(s):  
R. A. Delmas ◽  
J. Servant ◽  
J. P. Tathy ◽  
B. Cros ◽  
M. Labat

10.12737/3833 ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. 149-152 ◽  
Author(s):  
Ульданова ◽  
Railya Uldanova

The coastal forests, presented by valuable deciduous and coniferous forests, grow in the northeastern and eastern parts of the Volga region of the Republic of Tatarstan, skirting the high right bank of the Volga River. They contribute to the maintenance of biological diversity in nature. The study of the formation of coastal forest phytocenoses, their species diversity and the modern state is now urgent work, and development activities for the conservation of natural habitats of plants, improve the sustainability of forest ecosystems are perspective direction. According to research of the forests of the right bank of the river Volga, we present the structure of coastal forest ecosystems. The association of forest ecosystems to the various elements of the relief was installed. The types of soil and litter were presented. The estimation of α-diversity of vascular herbaceous plants and ß-diversity of the studied forest ecosystems were reported. The largest number of species of vascular plants in coastal forests are: oak plant communities; a second group includes birch plants, pine and willow; the third group - the lime and larch; the fourth group - maple plant communitie. The ß-diversity index (Whittaker’s index) of plants in the studied forests varies between 2.2-6.8. The Jaccard coefficient of floristic similarity between forest ecosystems varies from 0.01 to 0.30, which confirms the diversity of generated by coastal forest ecosystems. The greatest diversity of plants was found in forests of ash and mixed grass, mixed grass willow, oak and lime-grove, maple, ash and mixed grass larches, birch wood. The forestry activities in coastal areas should be aimed at creating productive, sustainable forest ecosystems with a rich biodiversity of flora and fauna.


10.12737/3822 ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. 112-116
Author(s):  
Жубрин ◽  
Denis Zhubrin ◽  
Сабиров ◽  
Ayrat Sabirov

Conducting soil studies are relevant in determining the subordination of forest types and biodiversity of vegetation to soil taxa, in determining the dependence of basic forest stand productivity from soil conditions, in creating a land registry and economic assessment of forest land, in studying the soil evolution of forest plantations under the impact of anthropogenic influences. Soil is the most important environmental factor in shaping the productivity and biodiversity of forest phytocenosis. The study of forest soils is also important in terms of basic research of their genesis, evolution. The article presents the results of research of soil conditions of vegetation growth of forest ecosystems of northern regions of Volga of the Republic of Tatarstan. The main types of forest soils are characterized in the paper. The studied forest formations grow on various soils on genesis and forest vegetation properties: sod-podzol, gray forest, brown forest, brown forest sandy, alluvial meadow, rendziny soil. The granulometric structure of soils varies from sandy to the clay. The well structured soils are formed on loamy layers under forest phytocenosis canopy. Pine and spruce ecosystems have a medi-decomposed litter of moder and multi-moder types; linden, oak, birch and aspen biogeocoenoses have strong-decomposed litter of multi type, that characterizes the intense biological cycle of substances in forest ecosystems. The wide range of place conditions of territories causes the biological diversity of forest vegetation at the level of species and ecosystems.


Sign in / Sign up

Export Citation Format

Share Document