scholarly journals OPTIMIZATION OF LITHIUM SOAP-BASED GREASE TESTING METHODOLOGY BASED ON MEASUREMENTS REPEATABILITY

Author(s):  
A.V. Radulescu ◽  
I. Radulescu

The purpose of the paper is to investigate the rheological properties of a lithium soap-based grease, using a Brookfield viscometer. An optimized methodology was proposed, applicable to the tested grease, which takes into account the possibility of reducing the testing time by analyzing the degree of measurements repeatability. Finally, the thermal variation of the rheological parameters (yield stress and viscosity) was obtained, in the temperature range 10...75 oC. The main result of the paper is the reducing of the testing time from 6 hours to 3 hours for one temperature, with the same precision of measurements, according to economical effects.

Author(s):  
Irina Ivanova ◽  
Viktor Mechtcherine

With increasing interest in the use of additive manufacturing techniques in the construction industry, static rheological properties of fresh concrete have necessarily come into focus. In particular, the knowledge and control of static yield stress (SYS) and its development over time are crucial for mastering formwork-free construction, e.g. by means of layered extrusion. Furthermore, solid understanding of the influences of various concrete constituents on the initial SYS of the mixture and the structural build-up rate is required for purposeful material design. This contribution is concentrated on the effect of aggregates on these rheological parameters. The volume fraction of aggregates was varied in the range of 35 to 55 % by volume under condition of constant total surface area of the particles. The total surface area per unit volume of cement paste was equal to 5.00, 7.25 and 10.00 m²/l, conditioned on the constant volume fraction of aggregates. Both variations were enabled by changing the particle size distributions of the aggregates while holding the cement paste composition constant for all concrete mixtures. To characterise the SYS and the structural build-up, constant shear rate tests with a vane-geometry rotational rheometer were performed. It was found that in the ranges under investigation the variation in volume fraction had a more pronounced effect on the static rheological properties of concrete than did the variation in surface area. An accurate mathematical description of the relationship between the initial SYS of concrete and the relative volume fraction of aggregate based on the Chateau-Ovarlez-Trung model was proposed. Challenges in deriving a similar relationship for the structural build-up rate of concrete were highlighted.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1551 ◽  
Author(s):  
Irina Ivanova ◽  
Viktor Mechtcherine

With increasing interest in the use of additive manufacturing techniques in the construction industry, static rheological properties of fresh concrete have necessarily come into focus. In particular, the knowledge and control of static yield stress (SYS) and its development over time are crucial for mastering formwork-free construction, e.g., by means of layered extrusion. Furthermore, solid understanding of the influences of various concrete constituents on the initial SYS of the mixture and the structural build-up rate is required for purposeful material design. This contribution is concentrated on the effect of aggregates on these rheological parameters. The volume fraction of aggregates was varied in the range of 35% to 55% by volume under condition of constant total surface area of the particles. The total surface area per unit volume of cement paste was equal to 5.00, 7.25 and 10.00 m²/L, conditioned on the constant volume fraction of aggregates. Both variations were enabled by changing the particle size distributions of the aggregates while holding the cement paste composition constant for all concrete mixtures. To characterise the SYS and the structural build-up, constant shear rate tests with a vane-geometry rotational rheometer were performed. It was found that in the ranges under investigation the variation in volume fraction had a more pronounced effect on the static rheological properties of concrete than did the variation in surface area. An accurate mathematical description of the relationship between the initial SYS of concrete and the relative volume fraction of aggregate based on the Chateau–Ovarlez–Trung model was proposed. Challenges in deriving a similar relationship for the structural build-up rate of concrete were highlighted.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 554
Author(s):  
Juan He ◽  
Congmi Cheng ◽  
Xiaofen Zhu ◽  
Xiaosen Li

The effect of silica fume on the rheological properties of a cement–silica fume–high range water reducer–water mixture with ultra-low water binder ratio (CSHWM) was studied. The results indicate that the W/B ratio and silica fume content have different effects on the rheological parameters, including the yield stress, plastic viscosity, and hysteresis loop area. The shear-thickening influence of CSHWM decreased with the increased silica fume content. When the silica fume content increased from 0% to 35%, the mixture with W/B ratio of 0.19 and 0.23 changed from a dilatant fluid to a Newtonian fluid, and then to a pseudoplastic fluid. When the silica fume content was less than 15%, the yield stress was close to 0. With the increase of silica fume content, the yield stress increased rapidly. The plastic viscosity and hysteresis loop area decreased slightly with the addition of a small amount of silica fume, but increased significantly with the continuous increase of silica fume. Compared with the Bingham and modified Bingham models, the Herschel–Buckley model is more applicable for this CSHWM.


2011 ◽  
Vol 261-263 ◽  
pp. 1201-1205 ◽  
Author(s):  
Xiao Hui Yuan ◽  
Yue Wang Han

Grout flow pattern and rheological parameters determine grouting pressure transfer process in annular tail void and filling rate for shield tail void. However, cemented mortar is a mixture of cement, fly ash, sand, bentonite and water, which lead to grout rheological properties and rheological parameters are difficultly determined. Based on orthogonal experimental design method, grout rheological properties were tested by rotational viscometer. Utilizing variance and poly-nonlinear regression analysis, the qualitative and quantitative relationships between mix ratios and rheological parameters were obtained respectively. It is shown that cemented mortar flow pattern commonly agree with Bingham fluid type, and plastic viscosity varies between 1 and 4Pa•s, and shear yield stress varies between 10 to 40Pa respectively. Water-binder ratio and bentonite-water ratio are key influencing factors for grout rheological parameters. With the water-binder ratio increasing and bentonite-water ratio decreasing, plastic viscosity and shear yield stress present reducing tendency.


2019 ◽  
Vol 20 (6) ◽  
pp. 2553-2562 ◽  
Author(s):  
Ahmad Shakeel ◽  
Alex Kirichek ◽  
Claire Chassagne

Abstract Purpose An innovative way to define navigable fluid mud layers is to make use of their rheological properties, in particular their yield stress. In order to help the development of in situ measurement techniques, it is essential that the key rheological parameters are estimated beforehand. Is there only one yield stress? In which shear rate/shear stress range is yield expected to occur? How is yield stress dependent on depths and locations in the harbor? In order to answer these questions, we investigated the changes in the rheological properties of mud from along the river stream in the Port of Hamburg, Germany, using a recently developed laboratory protocol. Materials and methods In this study, a detailed rheological analysis was carried out on the mud samples collected from different locations and depths of the Port of Hamburg. A variety of rheological tests was performed including: stress sweep tests, flow curves, thixotropic tests, oscillatory amplitude, and frequency sweep tests. Results and discussion The yield stresses of sediments from different locations were significantly dissimilar from each other due to differences in densities and organic matter content. Two yield stresses (termed static and fluidic) were observed for every sample and linearly correlated to each other. The thixotropic studies showed that all mud samples, except from one location, displayed a combination of thixotropic and anti-thixotropic behaviors. The results of frequency sweep tests showed the solid-like character of the sediments within the linear viscoelastic limit. The yield stresses, thixotropy, and moduli of the mud samples increased by going deeper into the sediment bed due to the increase in density of the sediments. Conclusions This study confirmed the applicability of the recently developed protocol as a fast and reliable tool to measure the yield stresses of sediments from different locations and depths in the Port of Hamburg. The fluid mud layer, in all the locations it was observed, exhibited relatively small yield stress values and weak thixotropic behavior. This confirms that despite the fact that rheology of fluid mud is complex, this layer can be navigable.


2014 ◽  
Vol 580-583 ◽  
pp. 231-237 ◽  
Author(s):  
Xiu Xiang Zhang ◽  
Deng Pan Qiao

In order to determine the concentration range of high-density slurry with coarse sands for suiting pipeline transportation in Jinchuan mine, at the same time find a suitable model to predict yield stress. In this paper, based on the coarse sand of Jinchuan mine as material to prepare high-density slurry, studied on the rheological properties. Through two-factor variance analysis, qualitative and ration analysis of the effect was conducted on the cement content and mass concentration to rheological parameters. The results show that the rheological model of the coarse sand is similar to that of Bingham plastic fluid, the mass concentration has a significant effect on viscosity and yield stress, and the viscosity is significantly affected by the cement content. The mass concentration of 82%-84% is suitable gravity transportation in pipeline. Meanwhile the relation model is established between yield stress and water-cement ratio, aggregate volume concentration, the model has high precision. These provide technical basis for designing filling system and ensuring the stability of slurry transportation, and a new idea for the research of rheological properties.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2939
Author(s):  
Zhipeng Xu ◽  
Yichen Miao ◽  
Haikuan Wu ◽  
Xun Yuan ◽  
Changwu Liu

The rheology of cement grouts often plays a crucial role in the success of rock grouting. In practice, the rheological parameters should be timely adjusted according to the evolution of grouting pressure, flow rate and injection time. However, obtaining the magnitude of rheological parameters is not easy to achieve under site conditions. More importantly, the ground temperature in deep rock masses is elevated higher than that on the surface or under room conditions, which has been demonstrated to strongly influence the rheological properties of grouts. Reasonable understanding and control of the rheological behavior of cement grouts at true ground temperatures is very important to the quality of grouting. This paper aims to propose a simplified method to approximately estimate the initial yield stress and viscosity of cement grouts for rock grouting under elevated ground temperature that actually exists in deep rock masses, on the basis of the flow spread test. The temperature investigated was controlled between 12 °C and 45 °C to simulate the true ground temperature in rock masses with a maximum depth of 1500 m below the surface. Taking the influences of elevated temperatures into account, a temperature-based model for estimating the initial viscosity of cement grout was successfully developed on the basis of Liu’s model and the results of the flow spread test. However, the yield stress failed to be estimated by the Lapasin model due to the absence of plastic behavior of cement grouts. In contrast, yield stress can be linearly correlated to the measured relative flow area. In this work, it was also found that the dependence of yield stress of cement grouts on relative flow area is a strongly exponential law. The temperature dependence of the viscosity of water was accounted for in both estimations of viscosity and yield stress of grouts. Significantly, it was found that the packing density of cement is dependent on the grout temperature, especially when the temperature is up to 45 °C. The proposed method in this work offers an alternative solution for technicians to reasonably control the rheological properties in the increasing applications of deep rock grouting.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hongjiang Wang ◽  
Liuhua Yang ◽  
Hong Li ◽  
Xu Zhou ◽  
Xiaotian Wang

Rheological properties, such as the yield stress, viscosity, and thixotropy, are related to the microstructure of cemented paste backfill (CPB). To highlight the relationship, two instruments were combined to measure the changes in the microstructure and the rheological properties of CPB simultaneously. In this way, the particle/agglomerate size distribution characterized by the focused beam reflectance measurement (FBRM) and the rheological factors measured by the rheometers could be directly linked. The results show that when under shearing, the intrinsic network structure of CPB responds to the shear-induced stresses with the interference of interparticle forces, leading to changes in the rheological behavior. Shear thinning can be found in CPB suspensions with a microstructure that is either loose interconnection or random. With an increase in the shear rate, random collisions among particles become organized in the flow, lowering the yield stress and viscosity. However, when the shear rate exceeds a certain threshold value, the rheological parameters change as a result of shear thickening. The results of this study contribute to better understanding of the complex rheological behavior of CPB.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Kameda ◽  
Hamada Yohei

AbstractSubmarine debris flows are mass movement processes on the seafloor, and are geohazards for seafloor infrastructure such as pipelines, communication cables, and submarine structures. Understanding the generation and run-out behavior of submarine debris flows is thus critical for assessing the risk of such geohazards. The rheological properties of seafloor sediments are governed by factors including sediment composition, grain size, water content, and physico-chemical conditions. In addition, extracellular polymeric substances (EPS) generated by microorganisms can affect rheological properties in natural systems. Here we show that a small quantity of EPS (~ 0.1 wt%) can potentially increase slope stability and decrease the mobility of submarine debris flows by increasing the internal cohesion of seafloor sediment. Our experiments demonstrated that the flow behavior of sediment suspensions mixed with an analogue material of EPS (xanthan gum) can be described by a Herschel–Bulkley model, with the rheological parameters being modified progressively, but not monotonously, with increasing EPS content. Numerical modeling of debris flows demonstrated that the run-out distance markedly decreases if even 0.1 wt% of EPS is added. The addition of EPS can also enhance the resistivity of sediment to fluidization triggered by cyclic loading, by means of formation of an EPS network that binds sediment particles. These findings suggest that the presence of EPS in natural environments reduces the likelihood of submarine geohazards.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2502
Author(s):  
Bogumiła Urbańska ◽  
Hanna Kowalska ◽  
Karolina Szulc ◽  
Małgorzata Ziarno ◽  
Irina Pochitskaya ◽  
...  

The content of polyphenols in chocolate depends on many factors related to the properties of raw material and manufacturing parameters. The trend toward developing chocolates made from unroasted cocoa beans encourages research in this area. In addition, modern customers attach great importance to how the food they consume benefits their bodies. One such benefit that consumers value is the preservation of natural antioxidant compounds in food products (e.g., polyphenols). Therefore, in our study we attempted to determine the relationship between variable parameters at the conching stage (i.e., temperature and time of) and the content of dominant polyphenols (i.e.,catechins, epicatechins, and procyanidin B2) in chocolate milk mass (CMM) obtained from unroasted cocoa beans. Increasing the conching temperature from 50 to 60 °C decreased the content of three basic flavan-3-ols. The highest number of these compounds was determined when the process was carried out at 50 °C. However, the time that caused the least degradation of these compounds differed. For catechin, it was 2 h; for epicatechin it was 1 h; and for procyanidin it was 3 h. The influence of both the temperature and conching time on the rheological properties of chocolate milk mass was demonstrated. At 50 °C, the viscosity and the yield stress of the conched mass showed its highest value.


Sign in / Sign up

Export Citation Format

Share Document