Leaf growth and K+/Na+ ratio as an indication of the salt tolerance of three sorghum cultivars grown under salinity stress and IAA treatment

2004 ◽  
Vol 52 (3) ◽  
pp. 287-296 ◽  
Author(s):  
M. M. Azooz ◽  
M. A. Shaddad ◽  
A. A. Abdel-Latef

The salt tolerance of three sorghum (Sorghum bicolor L.) cultivars (Dorado, Hagen Shandawil and Giza 113) and their responses to shoot spraying with 25 ppm IAA were studied. Salinity stress induced substantial differences between the three sorghum cultivars in the leaf area, dry mass, relative water content and tolerance index of the leaves. Dorado and Hagen Shandawil tolerated salinity up to 88 and 44 mM NaCl, respectively, but above this level, and at all salinity levels in Giza 113, a significant reduction in these parameters was recorded. The rate of reduction was lower in Dorado than in Hagen Shandawil and Giza 113, allowing the sequence Dorado ? Hagen Shandawil ? Giza 113 to be established for the tolerance of these cultivars to salinity. The differences in the tolerance of the sorghum cultivars were associated with large differences in K+ rather than in Na+, which was found to be similar in the whole plant. The youngest leaf was able to maintain a higher K+ content than the oldest leaf. Consequently the K+/Na+ ratios were higher in the most salt-tolerant cultivar Dorado than in the other sorghum cultivars, and in the youngest than in the oldest leaf. In conformity with this mechanism, the stimulatory effect of the exogenous application of IAA was mostly associated with a higher K+/Na+ ratio. Shoot spraying with IAA partially alleviated the inhibitory effect of salinity on leaf growth and on the K+ and Ca2+ contents, especially at low and moderate levels of salinity, while it markedly retarded the accumulation of Na+ in the different organs of sorghum cultivars. Abbreviations: LA: Leaf area, DM: Dry mass, I Indole acetic acid, RWC: Relative water content,TI: Tolerance index

1997 ◽  
Vol 24 (1) ◽  
pp. 49 ◽  
Author(s):  
K. M. Volkmar

This experiment as undertaken to determine the efects of soil drying around the nodal and/or seminal root systems on the shoot growth of wheat (Triticum aestivum L.). Two split-root experiments were conducted, the first on newly emerged nodal roots of 18-day-old wheat plants, the second on 25-day-old plants. In both experiments, nodal and seminal roots were isolated from one another and water was withheld from either the nodal root chamber, the seminal root chamber, or both, over 6 days. In the first experiment, leaf growth was unaffected by withholding water from very short nodal roots, even though leaf relative water content of the droughted plants decreased. By comparison, both leaf elongation rate and relative water content decreased by withholding water from the seminal roots. On plants that were 1 week older, leaf growth rate and leaf relative water content decreased when nodal roots were drought-stressed. Leaf growth rate of seminal root droughted plants was more impaired than their nodal root counterparts, even though leaf relative water contents of the two treatments were the same. In both experiments, drought stress applied to the nodal root system enhanced nodal root growth more than seminal roots. These results suggest that seminal and nodal roots perceive and respond to drought stress differently with respect to the nature of the message conveyed to the shoots.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1030 ◽  
Author(s):  
Rakiba Shultana ◽  
Ali Tan Kee Zuan ◽  
Mohd Rafii Yusop ◽  
Halimi Mohd Saud ◽  
Arolu Fatai Ayanda

Salt-tolerant plant growth-promoting rhizobacteria (PGPR) could be an alternative to alleviate salinity problems in rice plants grown in the coastal areas. This study was conducted to isolate and characterize salt-tolerant PGPR and observe their effects on the physiological and biochemical properties of rice plants grown under non-saline and saline glasshouse conditions. Three strains were selected based on their salt-tolerance and plant growth-promoting properties under in vitro saline conditions. These strains were identified as Bacillus tequilensis (UPMRB9), Bacillus aryabhattai (UPMRE6), and Providencia stuartii (UPMRG1) using a 16S rRNA technique. The selected strains were inoculated to three different rice varieties, namely BRRI dhan67 (salt-tolerant), Putra-1 (moderate salt-tolerant), and MR297 (salt-susceptible) under glasshouse conditions. Results showed that the MR297 rice variety inoculated with UPMRB9 produced the highest total chlorophyll content, with an increment of 28%, and lowest electrolyte leakage of 92%. The Putra-1 rice variety also showed a 156% total dry matter increase with the inoculation of this bacterial strain. The highest increase of relative water content and reduction of Na/K ratio were found upon inoculation of UPMRE6 and UPMRB9, respectively. The biggest significant effects of these bacterial inoculations were on relative water content, electrolyte leakage, and the Na/K ratio of the BRRI dhan67 rice variety under saline conditions, suggesting a synergistic effect on the mechanisms of plant salt-tolerance. This study has shown that the application of locally-isolated salt-tolerant PGPR strains could be an effective long-term and sustainable solution for rice cultivation in the coastal areas, which are affected by global climate change.


Author(s):  
Mainak Barman ◽  
Vinay Kumar Choudhary ◽  
Satish Kumar Singh ◽  
Rabiya Parveen ◽  
Abhishek K. Gowda

Character association studies help in assessing the relationship among yield and its components to enhance the selection utility. In view of this, the present research was carried out for assessing correlation and path coefficients among 30 bread wheat (Triticum aestivum L.) genotypes using fifteen quantitative parameters. Correlation analysis demonstrated a noteworthy positive relationship of days to fifty per cent flowering, number of tillers/plant, flag leaf area, spike length, plant height, chlorophyll content, relative water content, number of grains/ ear, thousand-grain weight, days to maturity and harvest index, with grain yield per plant at both the phenotypic and genotypic level except canopy temperature which showed a significant negative relationship. Path coefficient analysis revealed that plant height, flag leaf area, relative water content and grain per ear had the maximum positive direct effect on grain yield. Hence, the present investigation can be helpful in executing a reliable selection of parental lines based on these above mentioned traits in addition to developing high-yielding varieties for further breeding programme.


2021 ◽  
Vol 108 (june) ◽  
pp. 1-4
Author(s):  
Devi M ◽  
◽  
Vincent s ◽  
Babu Rajendra Prasad ◽  
Anandham R ◽  
...  

High temperature is a critical barrier in most cotton growing areas, limiting cotton growth and development. The present study aimed to evaluate the effects of foliar spray on KC 3 cotton variety grown under ambient (32.66°C) and high temperature (37.21°C) stress in open-top chamber (OTC) with a temperature of 5°C from the ambient temperature for 10d from flowering to boll development stage. Foliar spray of kaolin @ 3% and calcium carbonate @ 5% were sprayed separately to the set of pots both in ambient and elevated temperature on 70th day of flowering. Observations on morphological and physiological parameters were recorded on viz., plant height (cm plant-1), leaf area (cm2 plant-1), relative water content (%), canopy temperature (°C), SPAD, chlorophyll fluorescence (Fv/Fm ratio). Kaolin @ 3% foliar spray significantly increased the plant height, leaf area, relative water content, chlorophyll content and reduced the canopy temperature both in high temperature and ambient temperature conditions. Among these treatments, T2 - kaolin 3% (Ambient) followed by T5 - Kaolin 3% (elevated temperature of 5 °C) recorded higher values as compared to calcium carbonate treatment both in ambient temperature and high temperature condition.


1983 ◽  
Vol 10 (1) ◽  
pp. 43 ◽  
Author(s):  
DW Turner ◽  
E Lahav

Bananas (cv. Williams) were grown for 12 weeks in sunlit growth chambers at day/night temperatures of 17/10, 21/14, 25/18, 29/22, 33/26 or 37/30°C. Humidity was not controlled. At 17/10°C, the plants showed chilling injury and heat injury occurred at 37/30°C. Total plant dry weight was greatest at 25/18°C while leaf area was greatest at 33/26°C. At high temperatures proportionately less dry matter was present in the roots and corm compared with plants at 25/18°C. High temperatures produced more horizontal leaves but, to compensate for this, the laminae folded more readily. Lamina folding was closely associated with relative water content of the laminae, except under cool conditions where laminae folded despite high (97-99%) leaf relative water contents. Unit leaf rate (increase in whole plant dry weight per unit leaf area per unit time) was greatest at 21/14°C (5.8 g m-2 day-1) and least at 37/30°C (1.7 g m-2 day-1.) and had a strong negative association with whole-plant leaf resistance. Leaf relative water content was more closely associated with vapour pressure deficit than temperature and even at 37/30°C was high at 94%.


2020 ◽  
pp. 1-13
Author(s):  
Amandeep Kaur ◽  
Rashpal Singh Sarlach

Water stress is one of the major and challenging abiotic stress that affects the plant mostly at all stages like tillering, booting, anthesis, grain formation and grain filling. The aim of the present study is to investigate the effect of water stress on relative water content, leaf area and stay green habit of Iranian landraces along with commercial relevant checks under irrigated, restricted irrigation and rain-fed conditions. Iranian landraces were selected based on minimum reduction in vigor index as compared to control lines during preliminary screening experiment in the lab in which water stress is induced by Polyethylene glycol (PEG 6000). A field experiment was carried out at the experimental area of the Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, Punjab during 2016-2017. The relative water content of Iranian landraces was calculated at the bolting stage according to the turgid weight by applying the equation of relative water content. Leaf area was recorded by leaf area meter and stay-green habit based on a 1-4 visual scale. Analysis of variance revealed interaction among treatment and genotypes was significant (P≤ 0.05) for the leaf area, relative water content, stay green habit at anthesis and 30 days after anthesis. Leaf area, relative water content and stay green habit of Iranian landraces along with commercial checks reduced under water stress conditions. Based on the performance of Iranian landraces under stress conditions, 5 lines IWA 8600397, IWA 8600567, 8606739, IWA 8606786 and IWA 8600753 were considered as water stress tolerant.


Genetika ◽  
2013 ◽  
Vol 45 (2) ◽  
pp. 351-360 ◽  
Author(s):  
Ahmad Golparvar

In order to compare mode of inheritance, combining ability, heterosis and gene action in genetic control of traits flag leaf area, relative water content and grain filling rate of bread wheat under drought stress, a study was conducted on 8 cultivars using of Griffing?s method2 in fixed model. Mean square of general combining ability was significant also for all traits and mean square of specific combining ability was significant also for all traits except relative water content of leaf which show importance of both additive and dominant effects of genes in heredity of these traits under stress. GCA to SCA mean square ratio was significant for none of traits. Results of this study showed that non additive effects of genes were more important than additive effect for all traits. According to results we can understand that genetic improvement of mentioned traits will have low genetic efficiency by selection from the best crosses of early generations. Then it is better to delay selection until advanced generations and increase in heritability of these traits.


Botany ◽  
2013 ◽  
Vol 91 (8) ◽  
pp. 505-513 ◽  
Author(s):  
Ali Benadjaoud ◽  
Ghouziel Benhassaine-Kesri ◽  
Alain Zachowski ◽  
Fatiha Aïd

Plants of Parkinsonia aculeata L. were dehydrated by withholding water for 13 days and then rehydrated. The leaves of control plants and stressed plants were analyzed every four days from the beginning of stress and 6, 24, and 48 h after stress relief. Analysis of leaf water status showed a decrease in relative water content of nearly 16% during dehydration and a return to its control value after 48 h of rehydration. The contents of chlorophylls, chloroplast lipids (monogalactosyldiacylglycerol and digalactosyldiacylglycerol), and neutral lipids increased by 38%, 20%, and 125% (in μg·mg dry mass−1), respectively, when the daily decrease of relative water content reached 1.4%, while the mass of extra-plastidial lipids (phosphatidylcholine and phosphatidylethanolamine) increased by 25% (in μg·mg dry mass−1) only when the daily water loss was 2.6%. In addition, incorporation of radioactive acetate in lipids showed a preferential synthesis of digalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine. The unsaturation degree of galactolipids remained stable, while a slight increase of unsaturation of phosphatidylcholine and phosphatidylethanolamine was observed. After rehydration, the mass of chlorophylls fell sharply, while the amount of total lipids decreased slowly as the level remained 17% higher than in the control 6 h after stress relief. Our results show that Parkinsonia plants are sensitive to a slight variation of the water potential and respond with an increased synthesis of membrane lipids during stress and after rehydration.


2011 ◽  
Vol 51 (No. 5) ◽  
pp. 237-242 ◽  
Author(s):  
E. Kirova ◽  
D. Nedeva ◽  
A. Nikolova ◽  
G. Ignatov

The effect of the sources of nitrogen nutrition (nitrogen fixation or nitrate assimilation) and a gradual water stress on the relative water content, total fresh and dry biomass production, leaf growth, and changes in the total soluble protein spectra were studied. The plants were cultivated as soil cultures in a naturally illuminated greenhouse. Comparative studies were carried out with respect to well-watered, control plants. Nitrogen-fixing control and drought plants had relatively smaller root development but better relative water content and large leaf area on the last sampling day than nitrate-fed soybean plants. Water deficit effects on plant biomass at the end of the period studied (21 days) were independent on the nitrogen source. There was no qualitative difference in the total soluble protein spectra of nitratefed and nitrogen-fixing soybean leaves neither with the progress of development nor under drought conditions. But there was a difference in response to drought in termostable proteins of nitrate-fed and nitrogen-fixing plants. The quantity of termostable proteins in inoculated control plants was lower in some degree compared to uninoculated ones. In inoculated plants the water stress caused an increase in the amount of soluble termostable proteins


2019 ◽  
Vol 45 (1) ◽  
pp. 45-54
Author(s):  
Mst Shahnaz Sultana ◽  
MA Halim ◽  
Feroza Hossain ◽  
M Abdul Karim ◽  
Mohammad Talim Hossain

Salt tolerance in relation to water status and plant nutrients of two mungbean varieties, BARImung 2 (salinity sensitive) and BUmung 2 (salinity tolerant) was evaluated. The seeds were grown in pots and treated with NaCl levels of 0 (control), 100 and 200 mM. Different parameters related to water relations as well as mineral nutritients were measured. The exudation rate and relative water content were decreased but water saturation deficit was increased by salinity in both the varieties. In BARImung 2 plants, the exudation rate and relative water content were lower but water saturation deficit was higher than those in BUmung 2 at both 100 and 200 mM NaCl levels. Salinity also influenced the accumulation of Na, K, Ca and Mg in leaves, stems and roots of the two said mungbean varieties. Sodium accumulation was inceseased in all the plant-parts of both the varieties in the order of stem > root > leaf but in BUmung 2 the accumulation was lower than that of BARImung 2 except in root. Potassium accumulation deceresed in all parts of both the mungbean varieties but that was lower in BUmung 2 than that of BARImung 2. The contents of Ca and Mg in all the plant-parts increased more in BUmung 2 than those of BARImung 2 with the increase of salinity levels. All these results indicated that high salt tolerance in BUmung 2 was associated with its better water status, more or less uniform mineral nutrient (Ca and Mg) distribution in different plantparts than that in BARImung 2. Asiat. Soc. Bangladesh, Sci. 45(1): 45-54, June 2019


Sign in / Sign up

Export Citation Format

Share Document