Formation of Single-crystal CoSi2 Buffer Layers on Si(100) Substrates by High Dose Co Ion Implantation for the Deposition of YBa2Cu3O7−x Thin Films

1997 ◽  
Vol 12 (8) ◽  
pp. 2072-2080 ◽  
Author(s):  
Yijie Li ◽  
P. Seidel ◽  
F. Machalett ◽  
S. Linzen ◽  
F. Schmidl

High quality single-crystal CoSi2 layers have been successfully formed on Si(100) using low energy high dose Co ion implantation followed by subsequent annealing method as a buffer layer for the deposition of YBa2Cu3O7−x (YBCO) thin films. Rutherford backscattering spectrometry with channeling (RBS-C) measurements showed that CoSi2 layers after annealing at temperatures between 850 and 950 °C had a minimum yield Xmin of about 3%. X-ray diffraction (XRD) spectra revealed that CoSi2 layers had the same orientation as the Si(100) substrates. Phi scan XRD spectra proved that CoSi2 layers epitaxially grew in the cube-on-cube epitaxial growth mode with respect to the Si(100) substrates. YBCO films and CeO2/YSZ buffer layers were deposited on CoSi2/Si(100) substrates via laser ablation and electron beam evaporation, respectively. θ-2θ, ω, and φ scan XRD spectra illustrated that YBCO films and CeO2/YSZ buffer layers had the epitaxial structure both in a-b plane and along the c-axis. YBCO films grown on this multilayered structure demonstrated excellent superconducting properties with the zero resistance transition temperature Tc0 of 87–90 K. The transition width (ΔTc) was about 1 K. Orientation and epitaxial crystalline quality of YBCO films and CeO2/YSZ buffer layers were confirmed by XRD and RBS-C characterization. All films consisted of c-axis oriented grains. RBS-C spectra indicated a high degree of crystalline perfection with a channeling minimum yield for Ba as low as 8%, and interdiffusion between the YBCO film and buffer layers or between the YBCO film and the substrate was limited. This multilayer system shows the possibility for the application of YBa2Cu3O7−x thin films on technical Si substrates in the field of hybrid superconductor-semiconductor technology.

2004 ◽  
Vol 811 ◽  
Author(s):  
Young-Bae Park ◽  
Jennifer L. Ruglovsky ◽  
Matthew J. Dicken ◽  
Harry A. Atwater ◽  
Thomas J. Watson

ABSTRACTLayer transfer of thin BaTiO3 films onto silicon-based substrates has been investigated. H+ and He+ ion implantation created a buried sacrificial layer in the BaTiO3 single crystals. Thermodynamics and kinetics of cavity nucleation and growth at the bonding interface have been investigated and single crystal thin film layers were transferred onto amorphous Si3N4 and Pt substrates. We have found that defects generated by ion implantation in ferroelectric materials can be significantly recovered with the subsequent annealing for layer splitting. Also, after high dose ion implantation, the films remain single crystal and stoichiometry. Finally, characterization proves the layer-transferred thin films are ferroelectrically active, with domains and piezoresponse similar to bulk crystals.


2013 ◽  
Vol 1579 ◽  
Author(s):  
Francesco Rizzo ◽  
Antonella Mancini ◽  
Angelo Vannozzi ◽  
Andrea Augieri ◽  
Achille Angrisani Armenio ◽  
...  

ABSTRACTThe study of high quality YBa2Cu3O7-x (YBCO) based superconducting films is a fundamental issue to be addressed when dealing with the realization of efficient coated conductors with large current carrying capacity. In this perspective the investigation of innovative buffer layers structures able to allow epitaxial YBCO film grow on metallic substrates and to prevent contamination and degradation issues holds a central role.In this work we thoroughly study the properties of YBCO films grown by means of pulsed lasers deposition on CeO2 template on both bare MgO single crystal and MgO-homoepitaxial/MgO single crystal substrates. Due to its high chemical and temperature stability the MgO reduces the oxygen diffusion effects. On the other hand, the CeO2 layer, pulsed laser deposited, prevents the YBCO film from metallic contamination and facilitates its epitaxial growth. Morphology and crystalline structure of buffer layers and superconductors film are investigated by using scanning electron microscopy (SEM), X-ray and electrons back-scattered diffraction techniques (XRD and EBSD).YBCO films show good critical temperature values (Tc > 87K) with sharp transitions. These encouraging results make our structures promising candidates in the realization of high quality YBCO based coated conductors.


Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


1992 ◽  
Vol 275 ◽  
Author(s):  
G. Cui ◽  
C. P. Beetz ◽  
B. A. Lincoln ◽  
P. S. Kirlin

ABSTRACTThe deposition of in-situ YBa2CU3O7-δ Superconducting films on polycrystalline diamond thin films has been demonstrated for the first time. Three different composite buffer layer systems have been explored for this purpose: (1) Diamond/Zr/YSZ/YBCO, (2) Diamond/Si3N4/YSZ/YBCO, and (3) Diamond/SiO2/YSZ/YBCO. The Zr was deposited by dc sputtering on the diamond films at 450 to 820 °C. The YSZ was deposited by reactive on-axis rf sputtering at 680 to 750 °C. The Si3N4 and SiO2 were also deposited by on-axis rf sputtering at 400 to 700 °C. YBCO films were grown on the buffer layers by off-axis rf sputtering at substrate temperatures between 690 °C and 750 °C. In all cases, the as-deposited YBCO films were superconducting above 77 K. This demonstration enables the fabrication of low heat capacity, fast response time bolometric IR detectors and paves the way for the use of HTSC on diamond for interconnect layers in multichip modules.


2012 ◽  
Vol 35 (1) ◽  
pp. 25-28 ◽  
Author(s):  
O. Gaathon ◽  
J.D. Adam ◽  
S.V. Krishnaswamy ◽  
J.W. Kysar ◽  
S. Bakhru ◽  
...  

2013 ◽  
Vol 27 (15) ◽  
pp. 1362009
Author(s):  
TAR-PIN CHEN ◽  
KE WU ◽  
S. Z. WANG ◽  
QI LI ◽  
BENJAMIN CHEN ◽  
...  

We have fabricated (110) epitaxy YBa 2 Cu 3 O 7-δ (YBCO), PrBa 2 Cu 0.8 Al 0.2 O 7 (PBCAO), PrBa 2 Cu 0.8 Ga 0.2 O 7-δ (PBCGO) nanometer-thin films and YBCO/PBCAO, YBCO/PBCGO multilayers of a variety of film thicknesses. Electrical resistivities measured from these systems were plotted against temperatures and film thicknesses and are presented in this paper. Superconducting onset temperature Tc of the YBCO films was estimated and plotted against YBCO film thickness. Superconducting coupling length was deduced. Finite size effect and 2D to 3D transition are also discussed.


1991 ◽  
Vol 235 ◽  
Author(s):  
Kin Man Yu ◽  
Ian G. Brown ◽  
Seongil Im

ABSTRACTWe have synthesized single crystal Si1−xGex alloy layers in Si <100> crystals by high dose Ge ion implantation and solid phase epitaxy. The implantation was performed using the metal vapor vacuum arc (Mevva) ion source. Ge ions at mean energies of 70 and 100 keV and with doses ranging from 1×1016 to to 7×1016 ions/cm2 were implanted into Si <100> crystals at room temperature, resulting in the formation of Si1−xGex alloy layers with peak Ge concentrations of 4 to 13 atomic %. Epitaxial regrowth of the amorphous layers was initiated by thermal annealing at temperatures higher than 500°C. The solid phase epitaxy process, the crystal quality, microstructures, interface morphology and defect structures were characterized by ion channeling and transmission electron microscopy. Compositionally graded single crystal Si1−xGex layers with full width at half maximum ∼100nm were formed under a ∼30nm Si layer after annealing at 600°C for 15 min. A high density of defects was found in the layers as well as in the substrate Si just below the original amorphous/crystalline interface. The concentration of these defects was significantly reduced after annealing at 900°C. The kinetics of the regrowth process, the crystalline quality of the alloy layers, the annealing characteristics of the defects, and the strains due to the lattice mismatch between the alloy and the substrate are discussed.


1994 ◽  
Vol 341 ◽  
Author(s):  
Ning Yu ◽  
Harriet Kung ◽  
Michael Nastasi ◽  
DeQuan Li

AbstractIron-doped sapphire thin films have been successfully epitaxially grown onto sapphire single crystal substrates by electron beam deposition and subsequent thermal annealing. Amorphous A12O3 thin films, about 280–390 nm thick, cation doped with iron have been deposited on [0001] oriented sapphire substrates. Iron doping with cation concentrations (a ratio of Fe content to total cation content) up to 5 at.% can be incorporated into the octahedral sites of Al-cation sublattice during the epitaxial regrowth process at 1000–1400 C, as determined by Rutherford Backscattering Spectrometry and ion channeling measurements. Cross-sectional Transmission Electron Microscopy shows the presence of two distinct regions in the annealed films. One exhibits the epitaxial relationship with the sapphire substrate and the second region has amorphous type of contrast. External optical transmittance measurements in the ultra violet and visible light range have exhibited the absorption associated with Fe3+. This study has demonstrated a simple method of incorporating dopants into single crystal sapphire, which has potential in the fabrications of thin film planar optical waveguiles.


1995 ◽  
Vol 10 (5) ◽  
pp. 1086-1090 ◽  
Author(s):  
J.H. Kroese ◽  
A.J. Drehrman ◽  
J.A. Horrigan

Thin films of Y-stabilized ZrO2 (YSZ) were deposited by RF diode sputtering on R-plane sapphire as a buffer layer for the deposition of YBa2Cu3O3 (YBCO). By increasing the partial pressure of oxygen in the sputter gas mixture from 20% to 50%, it was found that the substrate temperature required to obtain (100) oriented YSZ deposition could be lowered to 630 °C from 800 °C. This change is attributed to heating or mixing effects at the film surface, due to an increase in negative ion bombardment, which supplements the effects of external heating. Increases in the partial pressure of oxygen beyond 50% were found to be counterproductive. YBCO films, deposited on the YSZ buffer layers via magnetron sputtering, showed c-axis orientation and transition temperatures of 82 K. Orientation of both the YSZ and YBCO films was confirmed by x-ray diffraction and SEM characterization.


Sign in / Sign up

Export Citation Format

Share Document