Grain Morphology of Intermetallic Compounds at Solder Joints

2002 ◽  
Vol 17 (3) ◽  
pp. 597-599 ◽  
Author(s):  
Won Kyoung Choi ◽  
Se-Young Jang ◽  
Jong Hoon Kim ◽  
Kyung-Wook Paik ◽  
Hyuck Mo Lee

The grain morphology of the intermetallic compound (IMC) that forms at the interface between liquid solders and solid-metal substrates was observed at solder joints. Cu6Sn5 grains on Cu substrates were rough or rounded, and Ni3Sn4 grains on Ni substrates were faceted. Through the energy-based calculations, the relationship between the IMC grain morphology and Jackson's parameter α was explained. The Jackson's parameter of the IMC grain with a rough surface is smaller than 2 while it is larger than 2 for faceted grains.

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 936 ◽  
Author(s):  
Min-Soo Kang ◽  
Do-Seok Kim ◽  
Young-Eui Shin

This study investigated the suppression of the growth of the intermetallic compound (IMC) layer that forms between epoxy solder joints and the substrate in electronic packaging by adding graphene nano-sheets (GNSs) to 96.5Sn–3.0Ag–0.5Cu (wt %, SAC305) solder whose bonding characteristics had been strengthened with a polymer. IMC growth was induced in isothermal aging tests at 150 °C, 125 °C and 85 °C for 504 h (21 days). Activation energies were calculated based on the IMC layer thickness, temperature, and time. The activation energy required for the formation of IMCs was 45.5 KJ/mol for the plain epoxy solder, 52.8 KJ/mol for the 0.01%-GNS solder, 62.5 KJ/mol for the 0.05%-GNS solder, and 68.7 KJ/mol for the 0.1%-GNS solder. Thus, the preventive effects were higher for increasing concentrations of GNS in the epoxy solder. In addition, shear tests were employed on the solder joints to analyze the relationship between the addition of GNSs and the bonding characteristics of the solder joints. It was found that the addition of GNSs to epoxy solder weakened the bonding characteristics of the solder, but not critically so because the shear force was higher than for normal solder (i.e., without the addition of epoxy). Thus, the addition of a small amount of GNSs to epoxy solder can suppress the formation of an IMC layer during isothermal aging without significantly weakening the bonding characteristics of the epoxy solder paste.


2019 ◽  
Vol 33 (01) ◽  
pp. 1850425 ◽  
Author(s):  
Hongming Cai ◽  
Yang Liu ◽  
Shengli Li ◽  
Hao Zhang ◽  
Fenglian Sun ◽  
...  

In this paper, solderability, microstructure and hardness of SAC0705-xNi solder joints on Cu and graphene-coated Cu (G-Cu) substrates were studied. As Ni content increases in the solder, the solderability improves gradually on both the Cu and G-Cu substrates. The solderability of SAC0705-xNi is better on G-Cu substrate than that on Cu substrate. The increasing Ni content in the solder has a positive effect on the microstructure refinement of both the kinds of substrates. Such effect is more significant on G-Cu substrate than that on Cu substrate. With the increase of Ni content, the thickness of the interfacial intermetallic compound (IMC) shows an increasing trend first and then decreasing trend on the two kinds of substrates. Since the graphene layer works as a diffusion barrier, the IMC on G-Cu is thinner than that on Cu substrate. The addition of Ni leads to the strengthening of the microstructure and thus increases the hardness of the solder bulks.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1562
Author(s):  
Chao Ding ◽  
Jian Wang ◽  
Tianhan Liu ◽  
Hongbo Qin ◽  
Daoguo Yang ◽  
...  

Full intermetallic compound (IMC) solder joints present fascinating advantages in high-temperature applications. In this study, the mechanical properties and elastic anisotropy of η’-Cu6Sn5 and Cu3Sn intermetallic compounds were investigated using first-principles calculations. The values of single-crystal elastic constants, the elastic (E), shear (G), and bulk (B) moduli, and Poisson’s ratio (ν) were identified. In addition, the two values of G/B and ν indicated that the two IMCs were ductile materials. The elastic anisotropy of η’-Cu6Sn5 was found to be higher than Cu3Sn by calculating the universal anisotropic index. Furthermore, an interesting discovery was that the above two types of monocrystalline IMC exhibited mechanical anisotropic behavior. Specifically, the anisotropic degree of E and B complied with the following relationship: η’-Cu6Sn5 > Cu3Sn; however, the relationship was Cu3Sn > η’-Cu6Sn5 for the G. It is noted that the anisotropic degree of E and G was similar for the two IMCs. In addition, the anisotropy of the B was higher than the G and E, respectively, for η’-Cu6Sn5; however, in the case of Cu3Sn, the anisotropic degree of B, G, and E was similar.


2018 ◽  
Author(s):  
J. Lindsay ◽  
P. Trimby ◽  
J. Goulden ◽  
S. McCracken ◽  
R. Andrews

Abstract The results presented here show how high-speed simultaneous EBSD and EDS can be used to characterize the essential microstructural parameters in SnPb solder joints with high resolution and precision. Analyses of both intact and failed solder joints have been carried out. Regions of strain localization that are not apparent from the Sn and Pb phase distribution are identified in the intact bond, providing key insights into the mechanism of potential bond failure. In addition, EBSD provides a wealth of quantitative detail such as the relationship between parent Sn grain orientations and Pb coarsening, the morphology and distribution of IMCs on a sub-micron scale and accurate grain size information for all phases within the joint. Such analyses enable a better understanding of the microstructural developments leading up to failure, opening up the possibility of improved accelerated thermal cycling (ATC) testing and better quality control.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1407
Author(s):  
Tianyu Yao ◽  
Kui Wang ◽  
Haiyan Yang ◽  
Haiyan Jiang ◽  
Jie Wei ◽  
...  

A method of forming an Mg/Al intermetallic compound coating enriched with Mg17Al12 and Mg2Al3 was developed by heat treatment of electrodeposition Al coatings on Mg alloy at 350 °C. The composition of the Mg/Al intermetallic compounds could be tuned by changing the thickness of the Zn immersion layer. The morphology and composition of the Mg/Al intermetallic compound coatings were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron backscattered diffraction (EBSD). Nanomechanical properties were investigated via nano-hardness (nHV) and the elastic modulus (EIT), and the corrosion behavior was studied through hydrogen evolution and potentiodynamic (PD) polarization. The compact and uniform Al coating was electrodeposited on the Zn-immersed AZ91D substrate. After heat treatment, Mg2Al3 and Mg17Al12 phases formed, and as the thickness of the Zn layer increased from 0.2 to 1.8 μm, the ratio of Mg2Al3 and Mg17Al12 varied from 1:1 to 4:1. The nano-hardness increased to 2.4 ± 0.5 GPa and further improved to 3.5 ± 0.1 GPa. The Mg/Al intermetallic compound coating exhibited excellent corrosion resistance and had a prominent effect on the protection of the Mg alloy matrix. The control over the ratio of intermetallic compounds by varying the thickness of the Zn immersion layer can be an effective approach to achieve the optimal comprehensive performance. As the Zn immersion time was 4 min, the obtained intermetallic compounds had relatively excellent comprehensive properties.


2008 ◽  
Vol 580-582 ◽  
pp. 243-246 ◽  
Author(s):  
Hiroshi Nishikawa ◽  
Akira Komatsu ◽  
Tadashi Takemoto

The reaction between Sn-Ag (-Co) solder and electroless Ni-P plating was investigated in order to clarify the effect of the addition of Co to Sn-Ag solder on the formation of intermetallic compound (IMC) at the interface and the joint strength at the interface. Sn-Ag-Co solder was specially prepared. The results show that there is little effect of the addition of Co to the Sn-Ag solder on the IMC formation and the thickness of the IMC at the interface. For the pull strength of the solder bump joint, the addition of Co to the solder didn’t strongly affect the pull strength of the solder joints, but it affected the fracture mode of the solder joints.


Sign in / Sign up

Export Citation Format

Share Document