Overview: Damage in brittle layer structures from concentrated loads

2002 ◽  
Vol 17 (12) ◽  
pp. 3019-3036 ◽  
Author(s):  
Brian R. Lawn ◽  
Yan Deng ◽  
Pedro Miranda ◽  
Antonia Pajares ◽  
Herzl Chai ◽  
...  

In this article, we review recent advances in the understanding and analysis of damage initiation and evolution in laminate structures with brittle outerlayers and compliant sublayers in concentrated loading. The relevance of such damage to lifetime-limiting failures of engineering and biomechanical layer systems is emphasized. We describe the results of contact studies on monolayer, bilayer, trilayer, and multilayer test specimens that enable simple elucidation of fundamental damage mechanics and yet simulate essential function in a wide range of practical structures. Damage processes are observed usingpost mortem(“bonded-interface”) sectioning and directin situviewing during loading. The observations reveal a competition between damage modes in the brittle outerlayers—cone cracks or quasiplasticity at the top (near-contact) surfaces and laterally extending radial cracks at the lower surfaces. In metal or polymeric support layers, yield or viscoelasticity can become limiting factors. Analytical relations for the critical loads to initiate each damage mode are presented in terms of key system variables: geometrical (layer thickness and indenter radius); material (elastic modulus, strength and toughness of brittle components, hardness of deformable components). Such relations provide a sound physical basis for the design of brittle layer systems with optimal damage thresholds. Other elements of the damage process—damage evolution to failure, crack kinetics (and fatigue), flaw statistics, and complex (tangential) loading—are also considered.

2013 ◽  
Vol 61 (2) ◽  
pp. 161-172 ◽  
Author(s):  
M. Pál ◽  
O. Gondor ◽  
T. Janda

Low temperature is one of the most important limiting factors for plant growth throughout the world. Exposure to low temperature may cause various phenotypic and physiological symptoms, and may result in oxidative stress, leading to loss of membrane integrity and to the impairment of photosynthesis and general metabolic processes. Salicylic acid (SA), a phenolic compound produced by a wide range of plant species, may participate in many physiological and metabolic reactions in plants. It has been shown that exogenous SA may provide protection against low temperature injury in various plant species, while various stress factors may also modify the synthesis and metabolism of SA. In the present review, recent results on the effects of SA and related compounds in processes leading to acclimation to low temperatures will be discussed.


2019 ◽  
Vol 5 ◽  
pp. 38-56 ◽  
Author(s):  
Khulod A. Hemida ◽  
Amany M.M. Reyad

Salinity is one of the most dangerous environmental limiting factors of the plant productivity. A wide range of adaptation strategies is required to overcome salinity stress. However, such strategies seem to be long drawn and cost-intensive. It has been confirmed in recent years that plant growth promoting endophytes (PGPEs) that have the ability to further build a symbiotic association with their host to improve host plant salt tolerance. In our investigation try to improve plant salt tolerance using different species of endophytic bacteria. From the total eight endophytic bacterial species were isolated from root, stem, and leaf of Carthamustinctorius (safflower) plant, two isolates were capable of using 1-aminocyclopropane-1-carboxylic acid (ACC) as a sole nitrogen source, and they are of positive results for (ACC) deaminase activity and indole-3-acetic acid (IAA) production. The bacterial isolates were identified using 16S ribosomal DNA technique as Bacillus cereus and Bacillus aerius and had accession numbers MG708176 and MG711593 respectively, by submitting their sequences in GenBank database. This study showed that the bacterial strains B. cereus and B. aerius are valuable biological plant growth promoters that could enhance salt tolerance in Safflower plants under 100, 200, and 300mMNaCl levels resulting in an increase in plant growth and ascorbate-glutathione redox cycle, in comparison with the non-inoculated controls. Our findings reported that the co-inoculation of the two selected endophytic bacteria strains were successfully isolated from Safflower seedlings significantly alleviated the harmful effects of salt stress, promoted plant growth and biomass yield.


Author(s):  
Ahmed F. Al_talkani ◽  
Sarmed H. Kathem

Irinotecan (CPT-11) is a semisynthetic derivative of the antineoplastic agent camptothecin used in a wide range as an anti-cancer agent in many solid tumors because of its cytotoxic effect through the interaction with the topoisomerase I enzyme. The major limiting factors for irinotecan treatment are its association with potentially life-threatening toxicities including neutropenia and acute or delayed-type diarrhea, results from distinct interindividual and interethnic variability due to gene polymorphism. This is a cross sectional pharmacogentics study was conducted on 25 cancer patients to estimate the prevalence of UGT1A1*93 and ABCC5 allele single nucleotide polymorphism (SNP) in Iraqi cancer patients treated with irinotecan-based therapy at Middle Euphrates Cancer Center. Four drops of venous blood was drawn for each patient and was applied onto the FTA classic card to perform a genotyping assay for the 2 SNPs. After DNA isolation and purification, real time PCR was performed to detect the SNPs of each gene. Results of this study showed the prevalence of one allele variant (heterozygous mutation) of UGT1A1*93 was 64% compared to 36% of patients were wild type to this SNP. No patient (0%) could be detected with homozygous polymorphism of the UGT1A1*93. For the ABCC5 polymorphism, results revealed that 32% of patients have one polymorphic allele (heterozygous), while 28% of them have two polymorphic alleles (homozygous mutation). Wild type ABCC5 gene constitutes 40% of patients.   As a conclusion, high prevalence of UGT1A1*93 and ABCC5 polymorphic alleles were detected in patients at Middle Euphrates Cancer Center which may explain the high toxicity features associated with irinotecan therapy. 


Author(s):  
Qun Chao ◽  
Zi Xu ◽  
Jianfeng Tao ◽  
Chengliang Liu ◽  
Jiang Zhai

The axial piston pump in aerospace applications needs to operate over a wide range of fluid temperatures from −54°C to 135 °C. The fluid properties at such extreme temperatures will significantly affect the cavitation that is one of the major limiting factors for the efficiency and reliability of aviation axial piston pumps. However, it appears that very little of the existing literature studies the effects of extreme fluid temperatures on the pump cavitation. This paper aims to examine the temperature effects on the cavitation in an aviation axial piston pump. First, we develop a three-dimensional (3D) transient computational fluid dynamics (CFD) model to investigate the pump cavitation and validate it experimentally. Second, we use the validated CFD model to investigate the temperature effects on the pump cavitation by changing the fluid properties including viscosity, density, and bulk modulus. The numerical results show that low fluid temperature makes the aviation axial piston pump suffer serious cavitation due to high viscosity, leading to delivery flow breakdown, unacceptable pressure pulsation, and delayed pressure built up. In contrast, high fluid temperatures have minor effects on the cavitation although they increase the pressure pulsation and built-up time slightly.


2007 ◽  
Vol 15 (7) ◽  
pp. 521-533
Author(s):  
S. King ◽  
G. Stewart ◽  
A.T. McIlhagger ◽  
J.P. Quinn

Interest in 3D woven carbon fibre composites has increased within industries such as aerospace, automotive and marine, due to their high strength to weight ratio, their increased tailorability and their capacity to be manufactured into near net shape preforms, thereby reducing parts count, assembly time, labour intensity and costs. It is vital that critical areas of concern such as damage (and in particular damage initiation and development) are studied and understood, thereby reducing the limiting factors to their acceptance. The damage initiation and subsequent intervals of development for ILSS (Interlaminar Shear Strength) were determined experimentally. Particular focus is paid to the significance of binder edge and binder middle testing and the influence of through-the-thickness (T-T-T) reinforcement in relation to damage types and development. Control samples for binder edge and binder middle loading locations were tested to failure as a means of determining an average point of failure, allowing the generation of testing intervals. The performance and architecture of samples from each incremental interval were characterised using a combination of graphical analysis and optical microscopy with the aid of dye-penetrant to highlight fibre damage and matrix cracking. Samples displayed specific damage initiation points, thus allowing the generation of a damage guide relating to applied force. In addition, the results imply that a relationship exists between the location of applied load and subsequent damage, thus showing the significant influence played by the T-T-T binder loading location on damage development within 3D woven carbon fibre composites. Some of the preliminary data shown in this paper was presented at IMC23 at the University of Ulster, UK in August 2006 and at Texcomp 8 in Nottingham, UK October 2006.


Author(s):  
Sayed A. Nassar ◽  
Jianghui Mao ◽  
Xianjie Yang ◽  
Douglas Templeton

A proposed damage model is used for investigating the deformation and interfacial failure behavior of an adhesively bonded single-lap thick joint made of S2 glass/SC-15 epoxy resin composite material. The bonding material is 3M Scotch-Weld Epoxy Adhesive DP405 Black. Continuum damage mechanics models are used to describe the damage initiation and final failure at or near the interface. The effect of adhesive overlap length, thickness, and plasticity on the interfacial shear and normal stresses is studied. Experimental and analytical data are used to validate the proposed damage models.


2020 ◽  
Vol 43 (8) ◽  
pp. 1755-1768 ◽  
Author(s):  
Nicola Bonora ◽  
Gabriel Testa ◽  
Andrew Ruggiero ◽  
Gianluca Iannitti ◽  
Domenico Gentile

2019 ◽  
Vol 18 ◽  
pp. 153303381987020 ◽  
Author(s):  
Rance Tino ◽  
Adam Yeo ◽  
Martin Leary ◽  
Milan Brandt ◽  
Tomas Kron

Introduction: Additive manufacturing or 3-dimensional printing has become a widespread technology with many applications in medicine. We have conducted a systematic review of its application in radiation oncology with a particular emphasis on the creation of phantoms for image quality assessment and radiation dosimetry. Traditionally used phantoms for quality assurance in radiotherapy are often constraint by simplified geometry and homogenous nature to perform imaging analysis or pretreatment dosimetric verification. Such phantoms are limited due to their ability in only representing the average human body, not only in proportion and radiation properties but also do not accommodate pathological features. These limiting factors restrict the patient-specific quality assurance process to verify image-guided positioning accuracy and/or dose accuracy in “water-like” condition. Methods and Results: English speaking manuscripts published since 2008 were searched in 5 databases (Google Scholar, Scopus, PubMed, IEEE Xplore, and Web of Science). A significant increase in publications over the 10 years was observed with imaging and dosimetry phantoms about the same total number (52 vs 50). Key features of additive manufacturing are the customization with creation of realistic pathology as well as the ability to vary density and as such contrast. Commonly used printing materials, such as polylactic acid, acrylonitrile butadiene styrene, high-impact polystyrene and many more, are utilized to achieve a wide range of achievable X-ray attenuation values from −1000 HU to 500 HU and higher. Not surprisingly, multimaterial printing using the polymer jetting technology is emerging as an important printing process with its ability to create heterogeneous phantoms for dosimetry in radiotherapy. Conclusion: Given the flexibility and increasing availability and low cost of additive manufacturing, it can be expected that its applications for radiation medicine will continue to increase.


Author(s):  
Yan-tao Jiao ◽  
Bo Wang ◽  
Zhen-zhong Shen

Abstract A new plastic–damage constitutive model based on the combination of damage mechanics and classical plastic theory was developed to simulate the failure of concrete. In order to explain different material behaviors of concrete under tensile and compressive loadings, the plastic yield criterion, the different kinematic hardening rule for tension and compressive and the isotropic flow rule were established in the effective stress space. Meanwhile, two different empirical damage evolution equations were adopted: one for compression and the other for tension. A multi-axial damage influence factor was also introduced to fully describe the anisotropic damage of concrete. Finally, the model response was compared with a wide range of experiment results. The results showed that the model could well describe the nonlinear behavior of concrete in a complex stress state.


Sign in / Sign up

Export Citation Format

Share Document