Grain boundary dislocation interactions in nanocrystalline Al2O3

2007 ◽  
Vol 22 (4) ◽  
pp. 900-907
Author(s):  
Sampa Dhabal

To explore the mechanism of grain growth, gas phase synthesized nanopowders of Al2O3 were heated in ambient conditions at elevated temperatures. Transmission electron microscopy and x-ray line broadening studies were performed to determine the microstructural parameters like crystallite size and root-mean-square (rms) strain. Increase in crystallite size with a decrease in dislocation density was observed for annealing the powder at higher temperatures. From a detailed analysis of the dislocation interactions, it was shown that polygonization like interaction of dislocations is the primary cause for such growth. A model for such growth is proposed. From the measured values of the rms strain and crystallite size at different temperatures, the ratio of the bulk to the shear modulus was determined. The measured ratio was found, within experimental uncertainties, to be close to the bulk value.

2010 ◽  
Vol 163 ◽  
pp. 101-105
Author(s):  
Krzysztof Ziewiec ◽  
Krystian Prusik

The aim of the work was to provide information on structure development and change of properties at elevated temperatures in Fe41Ni39P10Si5B5 amorphous alloy. The alloy was characterized by X-ray diffraction. The changes of properties were characterized with use of dynamic mechanical thermal analysis (DMTA) and the resistivity measurements at elevated temperatures. The microstructure of the melt spun ribbon was investigated with use of transmission electron microscope (TEM) at different stages of phase transformations after heating to different temperatures. The initially amorphous structure undergoes phase transformations due to glass transition and crystallization of the alloy. The appearance of glass transition region results in decrease of storage modulus and in a reversible change of temperature coefficient of resistivity (TCR). The phases are characterized with use of TEM. The crystallization was found to have the two stages. Formation of bcc crystals and Ni12P5 is followed by transformation of the products into fcc crystals and Ni3P. Temporary changes of the storage modulus and elongation of the sample suggest formation of hard phases during crystallization.


2019 ◽  
Vol 950 ◽  
pp. 133-137
Author(s):  
Alexander M. Volodin ◽  
Vladimir O. Stoyanovskii ◽  
Vladimir I. Zaykovskii ◽  
Roman M. Kenzhin ◽  
Aleksey A. Vedyagin

Zirconium oxide was obtained via traditional precipitation from a ZrOCl2 solution with ammonia followed by drying at 110 °C. The carbon-coated samples were synthesized by calcination of the pristine zirconia mixed with polyvinylalcohol. The obtained ZrO2@C samples of core-shell structure as well as the reference samples of pristine zirconia were calcined at different temperatures from 500 to 1400 °C. All the materials were examined by a set of physicochemical methods (a low-temperature argon adsorption, transmission electron microscopy, X-ray diffraction analysis, photoluminescence spectroscopy). It was found that the carbon coating prevents the sintering of the oxide nanoparticles, which allows one to maintain the specific surface area, the size of the oxide core and, finally, stabilize its phase composition. Transformation of the cubic phase into monoclinic phase becomes significantly complicated. Thus, 40% of the cubic phase was detected even after calcination of the ZrO2@C sample at 1400 °C. Moreover, the carbon-coated samples treated at elevated temperatures with subsequent removal of the carbon shell were found to possess the highest concentration of the defects related to a presence of the anion vacancies in zirconia.


2009 ◽  
Vol 42 (4) ◽  
pp. 580-591 ◽  
Author(s):  
Levente Balogh ◽  
Géza Tichy ◽  
Tamás Ungár

A systematic procedure is developed to evaluate the frequency of {10.1}〈10.\overline 2〉 and {11.2}〈11.\overline 3〉 compressive twins and {10.2}〈10.\overline 1〉 and {11.1}〈\overline 1\overline 1.6〉 tensile twins together with dislocation densities, active slip systems and crystallite size in hexagonal close packed (hcp) metals. The effect of pyramidal twinning on X-ray line broadening in hcp metals is fundamentally different from the effect of twinning on close packed planes in face centred cubic (fcc) crystals. Therefore, the usual theoretical descriptions developed previously for fcc crystals cannot be used for pyramidal twinning in hcp crystals. The profile functions of sub-reflections for this type of twinning are derived to be the sum of a symmetrical and an antisymmetrical Lorentzian function. Sub-profile properties are parameterized and the parameter files are incorporated into the convolutional multiple whole profile (CMWP) procedure. The extended procedure,eCMWP, is applied to determine pyramidal twin frequencies together with dislocation densities, active slip systems and crystallite size in Mg deformed at different temperatures, in commercial purity Ti deformed at high temperature and in high-purity Ti deformed at room temperature.


2017 ◽  
Vol 898 ◽  
pp. 574-578
Author(s):  
Xiao Yun Song ◽  
Yong Ling Wang ◽  
Wen Jing Zhang ◽  
Wen Jun Ye ◽  
Song Xiao Hui

In this paper, three different double annealing treatments were applied on the 3mm-thick Ti-6Al-2Sn-4Zr-1Mo-2Nb-0.2Si (Ti62421S) alloy plate. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile tests were used to investigate the microstructure and mechanical properties under different temperatures of Ti62421S alloy. The results show that the content of primary α phase (αp) decreases while transformed β structure (βt) increases with the increasing first-stage annealing temperature. After double annealing treatment, ordered α2 phase particles precipitate within αp and the size increases with first annealing temperature. This leads to that with increasing first annealing temperature, ultimate tensile strength (UTS) at 600~650°C increases while elongation decreases. After 1000°C/1h/AC+ 750°C/2h/AC annealing, Ti62421S alloy plate exhibits superior combination of mechanical properties at room and elevated temperatures.


2021 ◽  
Vol 2 ◽  
Author(s):  
Emanuele Smecca ◽  
Ajay Kumar Jena ◽  
Ioannis Deretzis ◽  
Salvatore Valastro ◽  
Salvatore Sanzaro ◽  
...  

Hybrid perovskites are one of the most popular materials nowadays due to their very exclusive properties. To mitigate costs, complexity, and environmental impact, in this work, we have prepared methylammonium lead iodide (MAPbI3) films by a two-step Low-Vacuum Proximity-Space-Effusion (LV-PSE). The LV-PSE method exploits the low vacuum and the short diffusion path from the precursor source to have high thermal energy and partial pressure of the sublimated species close to the substrate. To this aim, the substrate is located at a medium distance (∼2 cm) from the melting pots in a low-vacuum chamber at ∼4 × 10−2 mbar. In the first step, a PbI2 film is deposited on a substrate; in the second step, the conversion into MAPbI3 occurs via an adsorption-incorporation-migration mechanism through the evaporation of methylammonium iodide (MAI) reagents. To exploit the potential of the conversion reaction, 190 nm MAPbI3 layers are deposited on TiO2 substrates. The layers were characterized in terms of crystal structure by X-ray diffraction (XRD) analyses, which showed the exclusive presence of MAPbI3 confirming the complete conversion of the PbI2 film. Scanning Electron Microscopy (SEM) analyses revealed a flat uniform pinhole-free coverage of the substrates and good conformational coverage of the TiO2 underlayer. Transmission Electron Microscopy (TEM) analyses addressed the formation of the tetragonal phase and the absence of the amorphous phase in the film. Spectroscopic ellipsometry (SE) analyses were used to explore the optical properties and the stability of the MAPbI3 layer at different temperatures and ambient conditions. As proof of concept, solar cell architectures were prepared using TiO2 as Electron Transporting Layer (ETL), Spiro-OMeTAD as Hole Transporting Layer (HTL), and Au as a contact to exploit the new up-scalable and clean deposition method. Using just ∼190 nm thick layers, the best efficiency reached with this architecture was 6.30%.


Author(s):  
Thomas R. McKee ◽  
Peter R. Buseck

Sediments commonly contain organic material which appears as refractory carbonaceous material in metamorphosed sedimentary rocks. Grew and others have shown that relative carbon content, crystallite size, X-ray crystallinity and development of well-ordered graphite crystal structure of the carbonaceous material increases with increasing metamorphic grade. The graphitization process is irreversible and appears to be continous from the amorphous to the completely graphitized stage. The most dramatic chemical and crystallographic changes take place within the chlorite metamorphic zone.The detailed X-ray investigation of crystallite size and crystalline ordering is complex and can best be investigated by other means such as high resolution transmission electron microscopy (HRTEM). The natural graphitization series is similar to that for heat-treated commercial carbon blacks, which have been successfully studied by HRTEM (Ban and others).


Author(s):  
J. L. Brimhall ◽  
H. E. Kissinger ◽  
B. Mastel

Some information on the size and density of voids that develop in several high purity metals and alloys during irradiation with neutrons at elevated temperatures has been reported as a function of irradiation parameters. An area of particular interest is the nucleation and early growth stage of voids. It is the purpose of this paper to describe the microstructure in high purity nickel after irradiation to a very low but constant neutron exposure at three different temperatures.Annealed specimens of 99-997% pure nickel in the form of foils 75μ thick were irradiated in a capsule to a total fluence of 2.2 × 1019 n/cm2 (E > 1.0 MeV). The capsule consisted of three temperature zones maintained by heaters and monitored by thermocouples at 350, 400, and 450°C, respectively. The temperature was automatically dropped to 60°C while the reactor was down.


The analysis of the previous results of the study on concrete stress-strain behavior at elevated temperatures has been carried out. Based on the analysis, the main reasons for strength retrogression and elastic modulus reduction of concrete have been identified. Despite a significant amount of research in this area, there is a large spread in experimental data received, both as a result of compression and tension. In addition, the deformation characteristics of concrete are insufficiently studied: the coefficient of transverse deformation, the limiting relative compression deformation corresponding to the peak load and the almost complete absence of studies of complete deformation diagrams at elevated temperatures. The two testing chambers provided creating the necessary temperature conditions for conducting studies under bending compression and tension have been developed. On the basis of the obtained experimental data of physical and mechanical characteristics of concrete at different temperatures under conditions of axial compression and tensile bending, conclusions about the nature of changes in strength and deformation characteristics have been drawn. Compression tests conducted following the method of concrete deformation complete curves provided obtaining diagrams not only at normal temperature, but also at elevated temperature. Based on the experimental results, dependences of changes in prism strength and elastic modulus as well as an equation for determining the relative deformation and stresses at elevated temperatures at all stages of concrete deterioration have been suggested.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1089
Author(s):  
Muhammad T. Sajjad ◽  
Ashu K. Bansal ◽  
Francesco Antolini ◽  
Eduard Preis ◽  
Lenuta Stroea ◽  
...  

Many displays involve the use of color conversion layers. QDs are attractive candidates as color converters because of their easy processability, tuneable optical properties, high photoluminescence quantum yield, and good stability. Here, we show that emissive QDs with narrow emission range can be made in-situ in a polymer matrix, with properties useful for color conversion. This was achieved by blending the blue-emitting pyridine based polymer with a cadmium selenide precursor and baking their films at different temperatures. To achieve efficient color conversion, blend ratio and baking temperature/time were varied. We found that thermal decomposition of the precursor leads to highly emissive QDs whose final size and emission can be controlled using baking temperature/time. The formation of the QDs inside the polymer matrix was confirmed through morphological studies using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Hence, our approach provides a cost-effective route to making highly emissive color converters for multi-color displays.


Sign in / Sign up

Export Citation Format

Share Document