Radiation Shielding Analysis for Various Materials in the Extreme Jovian Environment

2006 ◽  
Vol 929 ◽  
Author(s):  
William Atwell

ABSTRACTEarlier particle experiments in the 1970s on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, the GIRE model was utilized to generate trapped proton and electron spectra as a function of Rj (Rj = radius of Jupiter = ∼71,400 km). Using these spectra and a high-energy particle transport codes (MCNPX and HZETRN), radiation exposures and dose effects for a variety of shielding materials (Al, polyethylene [PE], and Ta plus several other elemental materials for “Graded-Z” portion of the paper) and thicknesses are presented for the Icy Moon, Europa, Ganymede, and Callisto for several orbital inclinations. In addition, an in-depth discussion and absorbed dose calculations are presented for “Graded-Z” materials and several computer codes were utilized for comparison purposes. We find overall there is generally quite good agreement between the various computer codes utilized in the study: MCNPX (Monte Carlo) vs. HZETRN (deterministic) for slab shielding and the comparison of “Graded-Z” shielding using the CEPXS, NOVICE, and NASA JPL codes. Finally, we conclude that the merits of using “Graded-Z” materials that include PE, due to cost and weight, should aid future Jupiter mission planners and spacecraft designers.

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1531 ◽  
Author(s):  
Chang Cai ◽  
Shuai Gao ◽  
Peixiong Zhao ◽  
Jian Yu ◽  
Kai Zhao ◽  
...  

Radiation effects can induce severe and diverse soft errors in digital circuits and systems. A Xilinx commercial 16 nm FinFET static random-access memory (SRAM)-based field-programmable gate array (FPGA) was selected to evaluate the radiation sensitivity and promote the space application of FinFET ultra large-scale integrated circuits (ULSI). Picosecond pulsed laser and high energy heavy ions were employed for irradiation. Before the tests, SRAM-based configure RAMs (CRAMs) were initialized and configured. The 100% embedded block RAMs (BRAMs) were utilized based on the Vivado implementation of the compiled hardware description language. No hard error was observed in both the laser and heavy-ion test. The thresholds for laser-induced single event upset (SEU) were ~3.5 nJ, and the SEU cross-sections were correlated positively to the laser’s energy. Multi-bit upsets were measured in heavy-ion and high-energy laser irradiation. Moreover, latch-up and functional interrupt phenomena were common, especially in the heavy-ion tests. The single event effect results for the 16 nm FinFET process were significant, and some radiation tolerance strategies were required in a radiation environment.


2020 ◽  
Author(s):  
Nicolas André ◽  
Vincent Génot ◽  
Andrea Opitz ◽  
Baptiste Cecconi ◽  
Nick Achilleos ◽  
...  

<p>The H2020 Europlanet-2020 programme, which ended on Aug 31<sup>st</sup>, 2019, included an activity called PSWS (Planetary Space Weather Services), which provided 12 services distributed over four different domains (A. Prediction, B. Detection, C. Modelling, D. Alerts) and accessed through the PSWS portal (http://planetaryspaceweather-europlanet.irap.omp.eu/):</p> <p>A1. 1D MHD Solar Wind Prediction Tool – HELIOPROPA,</p> <p>A2. Propagation Tool,</p> <p>A3. Meteor showers,</p> <p>A4. Cometary tail crossings – TAILCATCHER,</p> <p>B1. Lunar impacts – ALFIE,</p> <p>B2. Giant planet fireballs – DeTeCt3.1,</p> <p>B3. Cometary tails – WINDSOCKS,</p> <p>C1. Earth, Mars, Venus, Jupiter coupling- TRANSPLANET,</p> <p>C2. Mars radiation environment – RADMAREE,</p> <p>C3. Giant planet magnetodiscs – MAGNETODISC,</p> <p>C4. Jupiter’s thermosphere, D. Alerts.</p> <p>In the framework of the starting Europlanet-2024 programme, SPIDER will extend PSWS domains (A. Prediction, C. Modelling, E. Databases) services and give the European planetary scientists, space agencies and industries access to 6 unique, publicly available and sophisticated services in order to model planetary environments and solar wind interactions through the deployment of a dedicated run on request infrastructure and associated databases.</p> <p>C5. A service for runs on request of models of Jupiter’s moon exospheres as well as the exosphere of Mercury,</p> <p>C6. A service to connect the open-source Spacecraft-Plasma Interaction Software (SPIS) software with models of space environments in order to compute the effect of spacecraft potential on scientific instruments onboard space missions. Pre-configured simulations will be made for Bepi-Colombo and JUICE missions,</p> <p>C7. A service for runs on request of particle tracing models in planetary magnetospheres,</p> <p>E1. A database of the high-energy particle flux proxy at Mars, Venus and comet 67P using background counts observed in the data obtained by the plasma instruments onboard Mars Express (operational from 2003), Venus Express (2006–2014), and Rosetta (2014–2015);</p> <p>E2. A simulation database for Mercury and Jupiter’s moons magnetospheres and link them with prediction of the solar wind parameters from Europlanet-RI H2020 PSWS services.</p> <p>A1. An extension of the Europlanet-RI H2020 PSWS Heliopropa service in order to ingest new observations from Solar missions like the ESA Solar Orbiter or NASA Solar Parker Probe missions and use them as input parameters for solar wind prediction;</p> <p>These developments will be discussed in the presentation.</p> <p>The Europlanet 2020 Research Infrastructure project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.</p> <p>The Europlanet 2024 Research Infrastructure project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871149.</p>


2021 ◽  
Vol 22 (24) ◽  
pp. 13305
Author(s):  
Maren K. Schroeder ◽  
Bin Liu ◽  
Robert G. Hinshaw ◽  
Mi-Ae Park ◽  
Shuyan Wang ◽  
...  

Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer’s disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer’s-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aβ) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aβ and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.


Author(s):  
Yue Ma ◽  
Jinshun Bi ◽  
Sandip Majumdar ◽  
Safdar Mehmood ◽  
Lanlong Ji ◽  
...  

Abstract In this paper, we carried out detailed TCAD simulations to investigate the radiation effects, e.g., total ionizing dose (TID) and single-event effects (SEEs), on direct current (DC) and radio frequency (RF) characteristics of the gate-all-around (GAA) nanosheet field-effect transistor (FET). The simulation model used is composed of 7-layer stacked GAA nanosheet FET with Lg=22 nm, which was implemented in this study. The open current and the drain-induced barrier lowering of the device are ~ 3mA/μm and 47mV/V, respectively. The results indicate that the TID have little influence on the DC and RF characteristics when the transistor is working in an open state. During the SEEs simulation, we considered three incident directions for the high energy particle, including the lateral direction of the channels, the vertical direction of the channels and the top of the channels. The influence of the particle injecting along the lateral and vertical directions of the channels shows stronger relation with the distance from the incident point compared to the influence of the particle from the top. Besides, the general influence of the particle injecting along the lateral directions of the channels is higher than the other two directions. The total injected charge of the particle injecting along the lateral direction, along the vertical direction and from the top are 3 fC, 1.4 fC and 2.1 fC, respectively. As compared to the FinFET, the GAA nanosheet has superior RF performances and less sensitivity to TID effect. This work can provide a guideline for the GAA nanosheet devices in aerospace and avionic RF applications.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 690 ◽  
Author(s):  
V. Díez-Acereda ◽  
Sunil L. Khemchandani ◽  
J. del Pino ◽  
S. Mateos-Angulo

This paper presents a thorough study of radiation effects on a frequency synthesizer designed in a 0.18 μ m CMOS technology. In CMOS devices, the effect of a high energy particle impact can be modeled by a current pulse connected to the drain of the transistors. The effects of SET (single event transient) and SEU (single event upset) were analyzed connecting current pulses to the drains of all the transistors and analyzing the amplitude variations and phase shifts obtained at the output nodes. Following this procedure, the most sensitive circuits were detected. This paper proposes a combination of radiation hardening-by-design techniques (RHBD) such as resistor–capacitor (RC) filtering or local circuit-redundancy to mitigate the effects of radiation. The proposed modifications make the frequency synthesizer more robust against radiation.


2021 ◽  
Author(s):  
Nicolas André ◽  
Team Spider

<p>The H2020 Europlanet-2020 programme, which ended on Aug 31<sup>st</sup>, 2019, included an activity called PSWS (Planetary Space Weather Services), which provided 12 services distributed over four different domains (A. Prediction, B. Detection, C. Modelling, D. Alerts) and accessed through the PSWS portal (http://planetaryspaceweather-europlanet.irap.omp.eu/):</p> <p>A1. 1D MHD Solar Wind Prediction Tool – HELIOPROPA,</p> <p>A2. Propagation Tool,</p> <p>A3. Meteor showers,</p> <p>A4. Cometary tail crossings – TAILCATCHER,</p> <p>B1. Lunar impacts – ALFIE,</p> <p>B2. Giant planet fireballs – DeTeCt3.1,</p> <p>B3. Cometary tails – WINDSOCKS,</p> <p>C1. Earth, Mars, Venus, Jupiter coupling- TRANSPLANET,</p> <p>C2. Mars radiation environment – RADMAREE,</p> <p>C3. Giant planet magnetodiscs – MAGNETODISC,</p> <p>C4. Jupiter’s thermosphere, D. Alerts.</p> <p>In the framework of the ongoing Europlanet-2024 programme, SPIDER will extend PSWS domains (A. Prediction, C. Modelling, E. Databases) services and give the European planetary scientists, space agencies and industries access to 6 unique, publicly available and sophisticated services in order to model planetary environments and solar wind interactions through the deployment of a dedicated run on request infrastructure and associated databases.</p> <p>C5. A service for runs on request of models of Jupiter’s moon exospheres as well as the exosphere of Mercury,</p> <p>C6. A service to connect the open-source Spacecraft-Plasma Interaction Software (SPIS) software with models of space environments in order to compute the effect of spacecraft potential on scientific instruments onboard space missions. Pre-configured simulations will be made for Bepi-Colombo and JUICE missions,</p> <p>C7. A service for runs on request of particle tracing models in planetary magnetospheres,</p> <p>E1. A database of the high-energy particle flux proxy at Mars, Venus and comet 67P using background counts observed in the data obtained by the plasma instruments onboard Mars Express (operational from 2003), Venus Express (2006–2014), and Rosetta (2014–2015);</p> <p>E2. A simulation database for Mercury and Jupiter’s moons magnetospheres and link them with prediction of the solar wind parameters from Europlanet-RI H2020 PSWS services.</p> <p>A1. An extension of the Europlanet-RI H2020 PSWS Heliopropa service in order to ingest new observations from Solar missions like the ESA Solar Orbiter or NASA Solar Parker Probe missions and use them as input parameters for solar wind prediction;</p> <p>The developments performed during the second year of the project will be discussed in the presentation.</p> <p>The Europlanet 2020 Research Infrastructure project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.</p>


Majority of youngsters’ having connected online through internet either through computers or by smart phones. After the entry of Jio in the field of internet, the competition began and the cost of internet service became much cheaper andnoweveryone SRAM can be found in the cache memory which is a part of the RAM digital to analog converter. SRAM is used for high speed register and some of the small memory banks. The risk of these circuits and memory arrays which are capable to radiation effects than circuits powered at minimal supply voltages. when an high energy particle hits a sensitive node in a circuit soft errors like Single Event Upsets(SEUs)occurs. The attainment of radiation hardening of memory blocks is executing large bit cells or single Error Correcting Codes(ECCs). But ECC may require notable area, performance and leakage power penalties. The favorable device characteristic of FinFET avails them as a popular contender for the replacement of CMOS technologies. An optimal approach to reduce the leakage power of a 13T SRAM cell based on 22nm FinFET technology is proposed in this work . The circuit contains a dual- driven separated feedback mechanism to tolerate the upset with charge of deposits . Better immunity is supplied by this cell to soft errors when compared to 6T SRAM cell


2004 ◽  
Vol 851 ◽  
Author(s):  
R. Wilkins ◽  
M. X. Pulikkathara ◽  
Valery N. Khabashesku ◽  
E. V. Barrera ◽  
Ranji K. Vaidyanathan ◽  
...  

ABSTRACTMaterials based on carbon nanotubes hold great promise for a variety of applications relevant to space exploration and the aerospace industry. Materials used for these applications will be subject to hostile environments including increased levels of high-energy particulate radiation. The type, energy range and fluence of the radiation will depend on the environment of the space mission. While it is not feasible to conduct an exhaustive study of the effects of space radiation on the earth's surface, ground-based experiments can be designed to simulate expected radiation environments using sources representing components of the relevant radiation environments. In this paper we present a compilation of results on materials based on singlewalled carbon nanotubes (SWNT) emphasizing nano-composites with raw (non-functionalized) and with 2–5% functionalized SWNTs in a polyethylene matrix. Materials such as these are promising candidates for multi-functional materials with good structural and radiation shielding characteristics. The radiation sources discussed here are relevant to the upper atmosphere (high energy neutrons), low earth orbit (medium energy protons) and interplanetary space (high energy protons and heavy ions). The samples are characterized before and after radiation with Raman spectroscopy which gives information on the structure of the SWNT and state of sidewall functionalization. Based on results from the SWNT papers (“buckypapers”) and the composites made from functionalized and non-functionalized SWNT, our data indicates that structural integrity and any sidewall functionalization of the SWNT in the nano-composite are radiation tolerant to radiation fluences commensurate with expected exposures on long-term spaceflight. More importantly, we find that the chemistry and material science of the processes used to produce the pristine and functionalized SWNT can affect the radiation characteristics of the nano-composites.


Sign in / Sign up

Export Citation Format

Share Document