Low Temperature Aqueous Polymeric Precursor Processing of ZnO:Er Using a Glycerol Chelating Agent

2006 ◽  
Vol 957 ◽  
Author(s):  
Uma Choppali ◽  
Brian P Gorman

ABSTRACTErbium doped ZnO (ZnO:Er) is considered to be a suitable candidate for fabrication of the current injection optical devices. Although ZnO: Er thin films have been synthesized previously by pulsed laser deposition, we present low – temperature processed ZnO:Er thin films from polymeric precursors. In this work, we study the effect of variation of Er doping concentration on the structural and electrical properties of the synthesized films. ZnO nanoparticles of varied Er doping concentration, derived from the prepared polymeric solution, has been spin – coated onto surface modified substrates, and annealed at different temperatures. The effect of Er doping concentration on film grain size and strain was analyzed using X-ray diffraction. XRD data reveals that doping of Er ions reduces compressive strain considerably in the films. It is speculated that the presence of larger Er cations in ZnO cause tensile stress, which neutralizes the inherent compressive stress, observed in undoped ZnO, significantly decreasing and hence, making the films stress free. Crystallite size of ZnO:Er thin films, annealed at 600°C, was calculated to be approximately 12 nm using Scherrer's equation. The surface morphology of the thin films was characterized by both SEM and AFM. Electrical resistivity of the films, annealed at 450oC, was calculated to be 290 Ω-m for 5 at wt% and 125 Ω-m for 10 at wt% ZnO:Er films.

2001 ◽  
Vol 16 (10) ◽  
pp. 3009-3013 ◽  
Author(s):  
R. G. Mendes ◽  
E. B. Araújo ◽  
J. A. Eiras

Strontium barium niobate (SBN) thin films were crystallized by conventional electric furnace annealing and by rapid-thermal annealing (RTA) at different temperatures. The average grain size of films was 70 nm and thickness around 500 nm. Using x-ray diffraction, we identified the presence of polycrystalline SBN phase for films annealed from 500 to 700 °C in both cases. Phases such as SrNb2O6 and BaNb2O6 were predominantly crystallized in films annealed at 500 °C, disappearing at higher temperatures. Dielectric and ferroelectric parameters obtained from films crystallized by conventional furnace and RTA presented essentially the same values.


2001 ◽  
Vol 688 ◽  
Author(s):  
Rasmi R. Das ◽  
W. Pérez ◽  
P. Bhattacharya ◽  
Ram. S. Katiyar

AbstractWe have grown SrBi2Ta2O9 (SBT) thin films on various bottom electrodes such as Pt/TiO2/SiO2/Si (Pt) and LaNiO3/Pt/TiO2/SiO2/Si (LNO) substrates. The substrate temperature and oxygen pressure for the SBT film was maintained at 500 °C and 200 mTorr. As-grown films were post-annealed at a temperature of 800 °C. X-ray diffraction studies revealed that as-grown films were amorphous and crystallized to single phase after annealing. The difficulty of obtaining lowest Raman modes of SBT on platinized silicon substrate was overcome by using conducting oxide electrodes. Films grown on platinized silicon showed maximum value of remanent polarization (2Pr ∼ 21.5 μC/cm2) with coercive field (Ec) of ∼ 67 kV/cm. The degradation of ferroelectric properties of the films was observed with the introduction of 50 nm conducting LaNiO3 electrode at the interface of Pt and SBT film, which was attributed to high resistivity of the oxide electrode layers. Leakage current density was studied with the consideration of the Schottky emission model. The barrier height of the films grown on Pt and LNO were estimated to be 1.27 eV and 1.12 eV, respectively. The reduction of barrier height was attributed to the lower work function of the LNO electrode.


2001 ◽  
Vol 16 (6) ◽  
pp. 1769-1775 ◽  
Author(s):  
J. McChesney ◽  
M. Hetzer ◽  
H. Shi ◽  
T. Charlton ◽  
D. Lederman

The FexZn1−xF2 alloy has been shown to be a model system for studying the magnetic phase diagram of dilute magnets. Whereas the growth of bulk single crystals with fixed Zn concentrations is difficult, the thin film growth is comparatively simpler and more flexible. To gain an understanding of the growth of FexZn1−xF2 films, a method was developed to grow smooth films at fixed concentrations. This was done by depositing a MgF2 buffer layer on MgF2(001) substrates and then depositing FeF2 and ZnF2 [001]-orientated epitaxial thin films at different temperatures. Surprisingly, the lattice spacing depends strongly on the growth temperature, for 44-nm-thick FeF2 films and 77-nm-thick ZnF2 films. This indicates a significant amount of stress, despite the close lattice match between the films and the MgF2 substrate. Thick alloy samples (approximately 500 nm thick) were grown by co-evaporation from the FeF2 and ZnF2 sources at the ideal temperature determined from the growth study, and their concentration was accurately determined using x-ray diffraction.


2021 ◽  
Vol 19 (10) ◽  
pp. 34-40
Author(s):  
B.Y. Taher ◽  
A.S. Ahmed ◽  
Hassan J. Alatta

In this study, CdO2 (1-X) AlX thin films were prepared by pulsed-laser deposition. The X-ray diffraction patterns reveal that the films were polycrystalline with a cubic structure, and the composition of the material changed from CdO at the target to CdO2 in the deposited thin films. The intensity of the diffraction peak (or the texture factor) decreases with increasing hkl and has a maximum value for the (111) plane, the interplanar distance and diffraction angle has a high deviation from the standard value for the (111) plane and. This deviation is affected by doping concentration and shows its highest deviation at a doping concentration of 0.1 wt.% for the (111) and (200), and the 0.3 and 0.5 wt.% for the (210) and (220) planes, respectively. The crystalline size take a less value at plane has a high texture factor that is (111) plane and decreases with increase the doping concentration.


2001 ◽  
Vol 666 ◽  
Author(s):  
Fumiaki Mitsugi ◽  
Tomoaki Ikegami ◽  
Kenji Ebihara ◽  
Jagdish Narayan ◽  
Alexander M. Grishin

ABSTRACTWe prepared colossal magnetoresistive La0.8Sr0.2MnO3 thin films on the MgO, SrTiO3 and LaAlO3 single crystal substrates using KrF excimer pulsed laser ablation technique. The structural and electrical properties of the La0.8Sr0.2MnO3 thin films which were strained by the lattice mismatch are reported. The in-plane lattice mismatch between the La0.8Sr0.2MnO3 and MgO, SrTiO3 and LaAlO3 substrates are -7.8 %, -0.5 % and +2.3 %, respectively. The X-ray diffraction spectra of the films exhibited c-axis orientation. In the case of the La0.8Sr0.2MnO3 / LaAlO3 thin films with thickness over 100 nm, the divided (00l) peaks were observed. The surface morphology and transport property of the strongly stressed La0.8Sr0.2MnO3 / LaAlO3 were different from those of La0.8Sr0.2MnO3 / MgO and La0.8Sr0.2MnO3 / SrTiO3thin films.


2001 ◽  
Vol 15 (17n19) ◽  
pp. 769-773 ◽  
Author(s):  
M. GARCIA-ROCHA ◽  
A. CONDE-GALLARDO ◽  
I. HERNANDEZ-CALDERON ◽  
R. PALOMINO-MERINO

In this work we show the results on tile growth and optical characterization of TiO 2 thin films doped with Eu atoms. Eu:TiO2 films were grown at room temperature with different Eu concentrations by sol-gel on Si Corning glass substrates. A different crystalline structure is developed for the films deposited on Corning glass than those deposited on Si as observed from x-ray diffraction experiments. Room and low temperature photoluminescence (PL) was measured by using two different lines (325 and 442 nm) of a HeCd laser. A strong PL signal associated to the 5 D 0→7 F 2 transition from Eu +3 was observed. A better emission was obtained from those films deposited on Si substrates, Finally, the evolution of the PL signal is studied when the samples are annealed at different temperatures in O 2 atmosphere.


2015 ◽  
Vol 22 (01) ◽  
pp. 1550009
Author(s):  
YA MING SUN ◽  
DONG LONG ◽  
XIANG CHENG MENG ◽  
ZHONG HUA ◽  
BO LI ◽  
...  

Cu 2 ZnSnS 4 thin films were prepared on soda-lime glass by sulfurization of the Cu / Sn / ZnS precursors. The microstructure, morphology and optical properties of the films were investigated by X-ray diffraction (XRD), Raman scattering (Raman), scanning electron microscopy (SEM) and UV-visible spectrophotometer (UV-Vis). The SEM images of the precursor and the thin films annealed at different temperatures are very different due to their different surface products. The absorption spectrum shifts to high-wave band region with increasing annealing temperatures. The precursor thin film annealed at 500°C for 2 h forms a single CZTS phase with kesterite structure and the bandgap is estimated to be 1.54 eV.


2015 ◽  
Vol 1088 ◽  
pp. 81-85 ◽  
Author(s):  
T.N. Myasoedova ◽  
Victor V. Petrov ◽  
Nina K. Plugotarenko ◽  
Dmitriy V. Sergeenko ◽  
Galina Yalovega ◽  
...  

Thin SiO2ZrO2films were prepared, up to 0.2 μm thick, by means of the sol–gel technology and characterized by a Scanning electron microscopy and X-ray diffraction. It is shown the presence of monoclinic, cubic and tetragonal phases of ZrO2in the SiO2matrix. The crystallites sizes depend on the annealing temperature of the film and amount to 35 and 56 nm for the films annealed at 773 and 973 K, respectively. The films resistance is rather sensitive to the presence of NO2and O3impurity in air at lower operating temperatures in the range of 30-60°C.


2011 ◽  
Vol 519 (13) ◽  
pp. 4366-4370 ◽  
Author(s):  
Chung-Jong Yu ◽  
Nark-Eon Sung ◽  
Han-Koo Lee ◽  
Hyun-Joon Shin ◽  
Young-Duck Yun ◽  
...  

2013 ◽  
Vol 22 ◽  
pp. 501-510 ◽  
Author(s):  
S. K. TAK ◽  
M. S. SHEKHWAT ◽  
R. MANGAL

ZnO powder was synthesized by solid state reaction method. The synthesized powder was granulated and pressed using uni-axial press for preparing the pallets. The prepared pellets were sintered in conventional furnace at different temperatures (900-1300° C). The phase study was done by powder X-ray diffraction and it was found that the there is no other phase present in the synthesized material but the peak intensity is increasing with temperature. The crystallite size of the synthesized ZnO powder was found to be increase with temperature. The effect of sintering on grain growth is investigated by scanning electron microscopy (SEM). SEM revels that the average grain size is increases with increase in sintering temperature. AC impedance of these samples was decreased markedly with increased sintering temperature. In present work the effect of sintering temperatures and hold time on micro structural and electrical properties of ZnO ceramics is carried out.


Sign in / Sign up

Export Citation Format

Share Document