Amorphous Silicon Based TFT and MIS Nonvolatile Memories

2007 ◽  
Vol 989 ◽  
Author(s):  
Yue Kuo ◽  
Helinda Nominanda

AbstractThe amorphous silicon (a-Si:H) TFT and MIS capacitor, which include an a-Si:H layer embedded in the silicon nitride gate dielectric layer, have been prepared and characterized for memory functions. Large shifts of the threshold voltage and flat band voltage were detected in the current-voltage and capacitance-voltage hysteresis measurements. The embedded a-Si:H film functioned as a charge retention medium that stores and releases injected carriers. The devices memory capacity varied with the thickness of the embedded a-Si:H layer and the sweep voltage. These low-cost memory devices can be used in many low-temperature prepared circuits.

1984 ◽  
Vol 33 ◽  
Author(s):  
M. Shur ◽  
M. Hack ◽  
C. Hyun

ABSTRACTWe have developed a new theory to describe the current-voltage characteristics of amorphous silicon based alloy field effect transistors. We show that the transition from below to above threshold operation occurs when the Fermi level in the accumulation region moves from the deep to tail localized states in the energy gap and that the field effect mobility is dependent on gate voltage. We also propose a new technique to determine the flat-band voltage from the I-V characteristics in the below threshold regime.


2018 ◽  
Vol 924 ◽  
pp. 229-232 ◽  
Author(s):  
Anders Hallén ◽  
Sethu Saveda Suvanam

The radiation hardness of two dielectrics, SiO2and Al2O3, deposited on low doped, n-type 4H-SiC epitaxial layers has been investigated by exposing MOS structures involving these materials to MeV proton irradiation. The samples are examined by capacitance voltage (CV) measurements and, from the flat band voltage shift, it is concluded that positive charge is induced in the exposed structures detectable for fluence above 1×1011cm-2. The positive charge increases with proton fluence, but the SiO2/4H-SiC structures are slightly more sensitive, showing that Al2O3can provide a more radiation hard passivation, or gate dielectric for 4H-SiC devices.


2015 ◽  
Vol 1088 ◽  
pp. 107-111
Author(s):  
Jian Shuang Liu ◽  
Fang Fang Zhu ◽  
Fei Lu ◽  
Lin Zhang

A plasma enhanced atomic layer deposition process has been demonstrated for Lanthanum oxide films using La (thd)3 precursor and oxygen plasma. The chemical and electrical properties of La2O3 ultra-thin films on Si (100) substrates before and after post-annealing in N2 ambient have been investigated. X-ray photoelectron spectroscopic revealed that interface reactions take place after annealing process which lead to oxygen insufficiency, as well as the balance band offset decreases with the increase of annealing temperature. The capacitance-voltage and current-voltage characteristics show La2O3 capacitors annealed at 900 °C have negligible hysteresis, smaller interface trap density in comparison with as-deposited samples, but larger flat band voltage and higher gate-leakage current density due to the appearance of oxygen vacancy in the La2O3 films.


1997 ◽  
Vol 486 ◽  
Author(s):  
G. Cocorullo ◽  
F. G. Della Corte ◽  
R. De Rosa ◽  
I. Rendina ◽  
A. Rubino ◽  
...  

AbstractThis paper reports about the fabrication and experimental test of an interferometric light intensity modulator integrated in a low loss (0.7 dB/cm), amorphous silicon based waveguide. It measures approximately 1 mm in length, while its cross section is 30-μm-wide and 3-μm-high. The device, which exploits the strong thermo-optic effect in thin film a-Si for its operation, is designed for application at the infrared wavelengths of 1.3 and 1.55 μm. The measured maximum operating on-off switching frequency of the device is 600 kHz. The very simple fabrication technology involves maximum process temperatures of 230 °C, and is therefore compatible with the standard microelectronic technology. This offers a new opportunity for the integration of optical and electronic functions on the same substrate.


2005 ◽  
Vol 862 ◽  
Author(s):  
R. Brüggemann ◽  
M. Rösch ◽  
S. Tardon ◽  
G.H. Bauer

AbstractWe apply the publicly available device modeling tool SC-Simul for simulating experiments with user-defined heterojunction diodes to discuss the role of the electric field in solar cells. For amorphous silicon/crystalline silicon heterodiodes, the role of interface defects, an amorphous silicon buffer layer and low-cost crystalline silicon is studied by simulation of current-voltage characteristics and photoluminescence. Photoluminescence is sensitive to the minority carrier density in the volume of the device and can be used to monitor minority carrier properties in these diodes.


1992 ◽  
Vol 284 ◽  
Author(s):  
J. B. Bernstein ◽  
E. F. Gleason ◽  
A. E. Wetsel ◽  
E. Z. Liu ◽  
P. W. Wyatt

ABSTRACTSilicon rich PECVD amorphous silicon nitride has been used as an inter-level metal dielectric for making laser programmable connections on restructurable VLSI. There is an apparent Schottky barrier characteristic that has a 0.11 eV lower barrier for Ti than for Al. The stoichiometry was analyzed using RBS and HFS, and found to contain approximately 55% Si, 25% N, and 20% H by atomic percentages. The optical bandgap is 2.01 eV as found by the Tauc method.The insulating behavior depends on time in an anomalous manner at applied fields greater than about 0.2 MV/cm, whereby the current increases with time for several secondsuntil it reaches an equilibrium value. The current decays in a normal charging manner at lower fields and in samples with insulating sub-layers between the electrodes and thenitride. When used as a gate dielectric, there is a long-time charging behavior that shifts the flat band voltage in the opposite direction of the applied stress. This shift is indicative of polarization within the dielectric. This behavior is similar to that of a reverse biased a-Si:H p-i-n diode.


2001 ◽  
Vol 664 ◽  
Author(s):  
D. Caputo ◽  
G. de Cesare ◽  
F. Lemmi ◽  
A. Nascetti ◽  
F. Palma ◽  
...  

ABSTRACTAmorphous silicon-based phototransistors are studied as an alternative solution to replace pixel-level amplifiers simplifying large-area imaging systems. We report electrical characterization by means of current-voltage and capacitance measurements. The measured capacitance increases with decreasing frequency of the probe signal and values largely exceeding the geometrical one at low frequencies have been achieved both in the dark and under illumination. In particular, values in excess of 200 μF/cm2 are measured under 220 μW/cm2 illumination at 600 nm at 100 mHz. The capacitance dependence on frequency is interpreted in terms of trapping and release kinetics processes in the base and of the gain of the device.


Sign in / Sign up

Export Citation Format

Share Document