Resonant Fatigue Testing of Cantilever Specimens Prepared from Thin Films

2008 ◽  
Vol 1139 ◽  
Author(s):  
Kwangsik Kwak ◽  
Masaaki Otsu ◽  
Kazuki Takashima

AbstractFatigue properties of thin film materials are extremely important to design durable and reliable microelectromechanical systems (MEMS) devices. However, it is rather difficult to apply conventional fatigue testing method of bulk materials to thin films. Therefore, a fatigue testing method fitted to thin film materials is required. In this investigation, we have developed a fatigue testing method that uses a resonance of cantilever type specimen prepared from thin films. Cantilever beam specimens with dimensions of 1(W) × 3(L) × 0.01(t) mm3 were prepared from Ni-P amorphous alloy thin films and gold foils. In addition, cantilever beam specimens with dimension of 3(L) × 0.3(W) × 0.005(t) mm3 were also prepared from single crystalline silicon thin films. These specimens were fixed to a holder that is connected to an golddio speaker used as an actuator, and were resonated in bending mode. In order to check the validity of this testing method, Young's moduli of these specimens were measured from resonant frequencies. The average Young's modulus of Ni-P was 108 GPa and that of gold foil specimen was 63 GPa, and these values were comparable with those measured by other techniques. This indicates that the resonance occurred theoretically-predicted manner and this testing method is valid for measuring the fatigue properties of thin films. Resonant fatigue tests were carried out for these specimens by changing amplitude range of resonance, and S-N curves were successfully obtained.

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Corina Bîrleanu ◽  
Marius Pustan ◽  
Florina Șerdean ◽  
Violeta Merie

Nanotribological studies of thin films are needed to develop a fundamental understanding of the phenomena that occur to the interface surfaces that come in contact at the micro and nanoscale and to study the interfacial phenomena that occur in microelectromechanical systems (MEMS/NEMS) and other applications. Atomic force microscopy (AFM) has been shown to be an instrument capable of investigating the nanomechanical behavior of many surfaces, including thin films. The measurements of tribo-mechanical behavior for MEMS materials are essential when it comes to designing and evaluating MEMS devices. A great deal of research has been conducted to evaluate the efficiency and reliability of different measurements methods for mechanical properties of MEMS material; nevertheless, the technologies regarding manufacturing and testing MEMS materials are not fully developed. The objectivesof this study are to focus on the review of the mechanical and tribological advantages of thin film and to highlight the experimental results of some thin films to obtain quantitative analyses, the elastic/plastic response and the nanotribological behavior. The slight fluctuation of the results for common thin-film materials is most likely due to the lack of international standardization for MEMS materials and for the methods used to measure their properties.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Chia-Cheng Chang ◽  
Sheng-Da Lin ◽  
Kuo-Ning Chiang

The fatigue characteristics of microelectromechanical systems (MEMS) material, such as silicon or polysilicon, have become very important. Many studies have focused on this topic, but none have defined a good methodology for extracting the applied stress and predicting fatigue life accurately. In this study, a methodology was developed for the life prediction of a polysilicon microstructure under bending tests. Based on the fatigue experiments conducted by Hocheng et al. (2008, “Various Fatigue Testing of Polycrystalline Silicon Microcantilever Beam in Bending,” Jpn. J. Appl. Phys., 47, pp. 5256–5261) and (Hung and Hocheng, 2012, “Frequency Effects and Life Prediction of Polysilicon Microcantilever Beams in Bending Fatigue,” J. Micro/Nanolithogr., MEMS MOEMS, 11, p. 021206), cantilever beams with different dimensions were remodeled with mesh control technology using finite element analysis (FEA) software to extract the stress magnitude. The mesh size, anchor boundary, loading boundary, critical stress definition, and solution type were well modified to obtain more correct stress values. Based on the new stress data extracted from the modified models, the optimized stress-number of life curve (S–N curve) was obtained, and the new life-prediction equation was found to be referable for polysilicon thin film life prediction under bending loads. After comparing the literature and confirming the new models, the frequency effect was observed only for the force control type and not for the displacement control type.


MRS Bulletin ◽  
2009 ◽  
Vol 34 (9) ◽  
pp. 658-664 ◽  
Author(s):  
P. Muralt ◽  
R. G. Polcawich ◽  
S. Trolier-McKinstry

AbstractPiezoelectric microelectromechanical systems (MEMS) offer the opportunity for high-sensitivity sensors and large displacement, low-voltage actuators. In particular, recent advances in the deposition of perovskite thin films point to a generation of MEMS devices capable of large displacements at complementary metal oxide semiconductor-compatible voltage levels. Moreover, if the devices are mounted in mechanically noisy environments, they also can be used for energy harvesting. Key to all of these applications is the ability to obtain high piezoelectric coefficients and retain these coefficients throughout the microfabrication process. This article will review the impact of composition, orientation, and microstructure on the piezoelectric properties of perovskite thin films such as PbZr1−xTixO3 (PZT). Superior piezoelectric coefficients (e31, f of −18 C/m2) are achieved in {001}-oriented PbZr0.52Ti0.48O3 films with improved compositional homogeneity on Si substrates. The advent of such high piezoelectric responses in films opens up a wide variety of possible applications. A few examples of these, including low-voltage radio frequency MEMS switches and resonators, actuators for millimeter-scale robotics, droplet ejectors, energy scavengers for unattended sensors, and medical imaging transducers, will be discussed.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 3757-3762 ◽  
Author(s):  
JAE-HYUN KIM ◽  
HAK-JOO LEE ◽  
SEUNG-WOO HAN ◽  
JUNG-YUP KIM ◽  
JUNG-SIL KIM ◽  
...  

Radio frequency microelectromechanical systems (RF–MEMS) are an attractive solution for wireless telecommunication applications. Freestanding films play an important role in RF–MEMS devices. For the successful commercialization of RF–MEMS devices, however, it is necessary to evaluate the mechanical reliability of freestanding films. The first step in the evaluation is to characterize the mechanical behavior of the films. This study focuses on freestanding Mo thin films. Mo test structures with a thickness of 960 nm were fabricated using sputtering deposition and patterned using a surface and bulk micromachining process. The strip-bending test was used to measure the stress–strain relation of the freestanding Mo thin films. The measured elastic modulus, initial stress, and yield strength of Mo thin films are reported.


2020 ◽  
Vol 10 (04) ◽  
pp. 2050010
Author(s):  
M. Kathiresan ◽  
Jain Jose ◽  
E. Varadarajan ◽  
R. Ramesh ◽  
V. Natarajan ◽  
...  

Doped lead–zirconate–titanate (PZT) thin films are preferred for the development of micro–electro–mechanical systems (MEMS)-based acoustic sensors because of their inherent higher dielectric and piezoelectric coefficients. Patterning process is used to develop such MEMS devices which is highly complex even for undoped PZT thin films; therefore, the problem is further cumbersome for doped PZT thin films due to the presence of added dopant elements and their associated chemistry. This paper presents patterning of strontium (Sr) and lanthanum (La) co-doped PZT thin film (PSLZT) deposited on platinized silicon substrate using wet and dry etching processes for fabricating a diaphragm structure with thickness of 15–25[Formula: see text][Formula: see text]m and diameter of 1.4–2[Formula: see text]mm, suitable for acoustic sensing applications. The effects of various etching conditions have been studied and the results are reported. It is found that the dry etching is the most suited process for realizing the piezoelectric MEMS structure due to its higher etching resolution. An appreciable etching rate of 260–270[Formula: see text]nm/min with smooth vertical sidewalls is achieved. The silicon diaphragm with patterned PSLZT thin film is found to retain more than 80% of its dielectric and piezoelectric coefficients and has a resonance of 1.43[Formula: see text]MHz.


2019 ◽  
Vol 9 (15) ◽  
pp. 3165
Author(s):  
Anthony J. Ferrer ◽  
Anna Halajko ◽  
Glenn G. Amatucci

Microelectromechanical systems (MEMS) are pervasive in modern technology due to their reliability, small foot print, and versatility of function. While many of the manufacturing techniques for MEMS devices stem from integrated circuit (IC) manufacturing, the wide range of designs necessitates more varied processing techniques. Here, new details of a scanning laser based direct-write dewetting technique are presented as an expansion of previous demonstrations. For the first time, the ability to pattern a high melting temperature and high reflectance metallic thin films of Ni and Ag, respectively, on polymer substrates is reported. Novel methods for reducing the power necessary for processing highly reflective films are demonstrated by depositing very thin films of high near-infrared absorbance.


2004 ◽  
Vol 851 ◽  
Author(s):  
Wen-Hsien Chuang ◽  
Rainer K. Fettig ◽  
Reza Ghodssi

ABSTRACTA novel micro-scale electrostatic actuator has been designed and fabricated to study fatigue properties of low-stress LPCVD silicon nitride thin films, which are the structural materials of microshutter arrays to be used in NASA's James Webb Space Telescope (JWST). To obtain different stress levels without high applied voltages, the electrostatic actuator was designed based on a resonant technique to achieve mechanical amplification. All fabricated devices were tested inside a focused-ion-beam (FIB) system with pressure of 10-6 torr at room temperature (23 ± 1 °C) and with the test duration ranging from 5 seconds to 8.5 hours, 105 to 109 cycles, respectively. From the experiment, no fatigue failure of low-stress LPCVD silicon nitride thin films has been observed up to 109 testing cycles, four orders of magnitude higher than the expected lifetime of the microshutter arrays. The presented test device and experimental technique can be extended to characterize fatigue properties for other thin film materials.


2003 ◽  
Vol 125 (4) ◽  
pp. 361-367 ◽  
Author(s):  
Xiaoqin Huang ◽  
Assimina A. Pelegri

MEMS (MicroElectroMechanical Systems) are composed of thin films and composite nanomaterials. Although the mechanical properties of their constituent materials play an important role in controlling their quality, reliability, and lifetime, they are often found to be different from their bulk counterparts. In this paper, low-k porous silica thin films spin coated on silicon substrates are studied. The roughness of spin-on coated porous silica films is analyzed with in-situ imaging and their mechanical properties are determined using nanoindentation. A Berkovich type nanoindenter, of a 142.3 deg total included angle, is used and continuous measurements of force and displacements are acquired. It is shown, that the measured results of hardness and Young’s modulus of these films depend on penetration depth. Furthermore, the film’s mechanical properties are influenced by the properties of the substrate, and the reproduction of the force versus displacement curves depends on the quality of the thin film. The hardness of the studied low-k spin coated silica thin film is measured as 0.35∼0.41 GPa and the Young’s modulus is determined as 2.74∼2.94 GPa.


1999 ◽  
Vol 563 ◽  
Author(s):  
J. Florando ◽  
H. Fujimoto ◽  
Q. Ma ◽  
O. Kraft ◽  
R. Schwaiger ◽  
...  

AbstractAn improved microbeam bending technique has been developed for the study of mechanical properties of thin films on substrates. This testing method utilizes a triangular beam geometry and improved micromachining techniques compared to previously used methods. The technique permits the stress-strain law for a metal film on a substrate to be determined. Single crystal Si beams and bi-layer Si/Al beams of lengths 25–100 pgm have been fabricated and tested. The beams are deflected with a nanoindenter, which accurately imposes a load on the beam and measures the corresponding displacement. For the bi-layer beams, a simple numerical model utilizing a Ramburg-Osgood constitutive law the film has been developed to determine the stress-strain behavior of the Al film.


Author(s):  
Hongxia Gao ◽  
Jianzu Yu ◽  
Lei Yu

Thermophysical properties of dielectric thin films are essential for researching on the thermal performance of microelectronic, optoelectronic and MEMS devices as well as for their reliability. The Joule-heating experimental method of the double-layer free-standing thin-film structure is used to determine the thermophysical properties of SiO2 and Al2O3 thin films by experiment. The thin films are deposited on the SiNx thin film by PECVD and EBE respectively. The results show that the thermal conductivity of both thin films have the obvious size effect. The value is merely a fraction of the one reported for each bulk specimen, and is coincident with the calculated Minimum Thermal Conductivity (MTC). The measured specific heat capacities are almost the same as those of the corresponding bulk. The steady state heat flow of SiO2/SiNx and Al2O3/SiNx membranes in the measurement is analyzed. The thermal radiation of the thin films always takes a large portion of total heat rejection. Therefore it can not be ignored as many macroscale thermal measurements always do.


Sign in / Sign up

Export Citation Format

Share Document