scholarly journals Ceramic Oxide Thin Film Formation Utilizing Biological Processes

1989 ◽  
Vol 174 ◽  
Author(s):  
B. J. Tarasevich ◽  
P. C. Rieke

AbstracMineralization processes used by bioorganisms have been adapted for the nucleation and growth of ceramic oxide thin films onto surfaces from aqueous solutions. These strategies include the use of surfaces derivatized with specific functional groups that control the nucleation and growth and properties of materials deposited. Iron oxide materials were deposited onto functionalized polystyrene surfaces, resulting in the formation of thin films composed of densely packed, nanometer-sized crystallites. Evidence for the formation of oriented crystallites was found. This process may have advantages over conventional thin film processing methods due to the ability to systematically control properties of materials deposited.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ahmad Al-Sarraj ◽  
Khaled M. Saoud ◽  
Abdelaziz Elmel ◽  
Said Mansour ◽  
Yousef Haik

Abstract In this paper, we report oxidation time effect on highly porous silver oxide nanowires thin films fabricated using ultrasonic spray pyrolysis and oxygen plasma etching method. The NW’s morphological, electrical, and optical properties were investigated under different plasma etching periods and the number of deposition cycles. The increase of plasma etching and oxidation time increases the surface roughness of the Ag NWs until it fused to form a porous thin film of silver oxide. AgNWs based thin films were characterized using X-ray diffraction, scanning electron microscope, transmission electron microscope, X-ray photoemission spectroscopy, and UV–Vis spectroscopy techniques. The obtained results indicate the formation of mixed mesoporous Ag2O and AgO NW thin films. The Ag2O phase of silver oxide appears after 300 s of oxidation under the same conditions, while the optical transparency of the thin film decreases as plasma etching time increases. The sheet resistance of the final film is influenced by the oxidation time and the plasma application periodicity. Graphic abstract


2016 ◽  
Vol 45 (43) ◽  
pp. 17312-17318 ◽  
Author(s):  
Eun-Kyung Kim ◽  
Dasom Park ◽  
Nabeen K. Shrestha ◽  
Jinho Chang ◽  
Cheol-Woo Yi ◽  
...  

An aqueous solution based synthetic method for binder-free Ag2Te thin films using ion exchange induced chemical transformation of Ag/AgxO thin films.


2017 ◽  
Vol 5 (21) ◽  
pp. 5090-5095 ◽  
Author(s):  
H. Wang ◽  
B. He ◽  
F. Liu ◽  
C. Stevens ◽  
M. A. Brady ◽  
...  

The first experimental observation of a rare re-entrant transition during COF thin film growth reveals independent nucleation and growth kinetic processes.


2011 ◽  
Vol 25 (20) ◽  
pp. 2741-2749 ◽  
Author(s):  
J. C. ZHOU ◽  
L. LI ◽  
L. Y. RONG ◽  
B. X. ZHAO ◽  
Y. M. CHEN ◽  
...  

High transparency and conductivity of transparent conducting oxide thin film are very important for improving the efficiency of solar cells. ZnO thin film is a better candidate for transparent conductive layer of solar cell. N-type ZnO thin films were prepared by radio-frequency magnetron sputtering on glass substrates. ZnO thin films underwent annealing treatment after deposition. The influence of the sputtering power on the surface morphology, the electrical and optical properties were studied by AFM, XRD, UV2450 and HMS-3000. The experimental results indicate that the crystal quality of ZnO thin film is improved and all films show higher c-axis orientation with increasing sputtering power from 50 to 125 W. The average transparency of ZnO thin films is higher than 90% in the range of 400–900 nm between the sputtering power of 50–100 W. After the rapid thermal annealing at 550°C for 300 s under N2 ambient, the minimum resistivity reach to 10-2Ω⋅ cm .


2021 ◽  
Author(s):  
Longfei Song ◽  
Tony Schenk ◽  
Emmanuel Defay ◽  
Sebastjan Glinsek

Highly conductive (conductivity 620 S cm−1) and transparent ITO thin films are achieved at low temperature (350 °C) through effective combustion solution processing via multistep coating. The properties show potential for next generation flexible and transparent electronics.


2017 ◽  
Vol 5 (2) ◽  
pp. 339-349 ◽  
Author(s):  
Sung Woon Cho ◽  
Da Eun Kim ◽  
Won Jun Kang ◽  
Bora Kim ◽  
Dea Ho Yoon ◽  
...  

The chemical durability of solution-processed oxide films was engineered via Sn-incorporation and thermal-treatment, which was applied for large-area TFT circuit integration.


Sign in / Sign up

Export Citation Format

Share Document