Pyrolysis Studies and Deposition of Sb Films Using the Novel Omvpe Source (I-Pr)2 SbH

1992 ◽  
Vol 282 ◽  
Author(s):  
Robert W. Gedridge ◽  
Kenneth E. Lee ◽  
Charlotte K. Lowe-Ma

ABSTRACTThe novel antimony source compound di-isopropylantimony hydride, (i-Pr)2 was synthesized and evaluated for use as a volatile Sb-source compound for low temperature growth of Sb-containing semiconductor materials. (i-Pr)2SbH was pyrolyzed in a horizontal atmospheric pressure organometallic vapor phase epitaxy (OMVPE) reactor using Arand H2 as carrier gases. The gaseous exhaust products were analyzed by a residual gas analyzer. Complete pyrolysis of (i-Pr)2SbH in our OMVPE reactor occursaround 300°C and 350°C in Ar and H2, respectively. A comparison between the pyrolysis temperatures and pyrolysis byproducts with respect to a proposed decomposition mechanism of (i-Pr)2SbH is presented. Sb films were grown on Si(100) andSi(111) as low as 200° C. The Sb films were analyzed by Auger and X-ray diffraction. These polycrystalline Sb films were free of detectable carbon by AES. X-ray diffraction data indicated that these Sb films were highly oriented in the [000L] direction.

1993 ◽  
Vol 58 (12) ◽  
pp. 2924-2935 ◽  
Author(s):  
Jane H. Jones ◽  
Bohumil Štíbr ◽  
John D. Kennedy ◽  
Mark Thornton-Pett

Thermolysis of [8,8-(PMe2Ph)2-nido-8,7-PtCB9H11] in boiling toluene solution results in an elimination of the platinum centre and cluster closure to give the ten-vertex closo species [6-(PMe2Ph)-closo-1-CB9H9] in 85% yield as a colourles air stable solid. The product is characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Crystals (from hexane-dichloromethane) are monoclinic, space group P21/c, with a = 903.20(9), b = 1 481.86(11), c = 2 320.0(2) pm, β = 97.860(7)° and Z = 8, and the structure has been refined to R(Rw) = 0.045(0.051) for 3 281 observed reflections with Fo > 2.0σ(Fo). The clean high-yield elimination of a metal centre from a polyhedral metallaborane or metallaheteroborane species is very rare.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4067
Author(s):  
Giovanni Ricci ◽  
Giuseppe Leone ◽  
Giorgia Zanchin ◽  
Benedetta Palucci ◽  
Alessandra Forni ◽  
...  

Some novel cobalt diphenylphosphine complexes were synthesized by reacting cobalt(II) chloride with (2-methoxyethyl)diphenylphosphine, (2-methoxyphenyl)diphenylphosphine, and 2-(1,1-dimethylpropyl)-6-(diphenylphosphino)pyridine. Single crystals suitable for X-ray diffraction studies were obtained for the first two complexes, and their crystal structure was determined. The novel compounds were then used in association with methylaluminoxane (MAO) for the polymerization of 1,3-butadiene, and their behavior was compared with that exhibited in the polymerization of the same monomer by the systems CoCl2(PnPrPh2)2/MAO and CoCl2(PPh3)2/MAO. Some significant differences were observed depending on the MAO/Co ratio used, and a plausible interpretation for such a different behavior is proposed.


Proceedings ◽  
2020 ◽  
Vol 62 (1) ◽  
pp. 4
Author(s):  
Hadj Bellagra ◽  
Oksana Nyhmatullina ◽  
Yuri Kogut ◽  
Halyna Myronchuk ◽  
Lyudmyla Piskach

Quaternary semiconductor materials of the Pb4Ga4GeS(Se)12 composition have attracted the attention of researchers due to their possible use as active elements of optoelectronics and nonlinear optics. The Pb4Ga4GeS(Se)12 phases belong to the solid solution ranges of the Pb3Ga2GeS(Se)8 compounds which form in the quasi-ternary systems PbS(Se)−Ga2S(Se)3−GeS(Se)2 at the cross of the PbGa2S(Se)4−Pb2GeS(Se)4 and PbS(Se)−PbGa2GeS(Se)6 sections. The quaternary sulfide melts congruently at 943 K. The crystallization of the Pb4Ga4GeSe12 phase is associated with the ternary peritectic process Lp + PbSe ↔ PbGa2S4 + Pb3Ga2GeSe8 at 868 K. For the single crystal studies, Pb4Ga4GeS(Se)12 were pre-synthesized by co-melting high-purity elements. The X-ray diffraction results confirm that these compounds possess non-centrosymmetric crystal structure (tetragonal symmetry, space group P–421c). The crystals were grown by the vertical Bridgman method in a two-zone furnace. The starting composition was stoichiometric for Pb4Ga4GeS12, and the solution-melt method was used for the selenide Pb4Ga4GeSe12. The obtained value of the bandgap energy for the Pb4Ga4GeS12 and Pb4Ga4GeSe12 crystals is 1.86 and 2.28 eV, respectively. Experimental measurements of the spectral distribution of photoconductivity for the Pb4Ga4GeS12 and Pb4Ga4GeSe12 crystals exhibit the presence of two spectral maxima. The first lies in the region of 570 (2.17 eV) and 680 nm (1.82 eV), respectively, and matches the optical bandgap estimates well. The locations of the admixture maxima at about 1030 (1.20 eV) and 1340 nm (0.92 eV), respectively, agree satisfactorily with the calculated energy positions of the defects vs. and VSe.


2011 ◽  
Vol 121-126 ◽  
pp. 1526-1529
Author(s):  
Ke Gao Liu ◽  
Jing Li

Bulk Fe4Sb12 and Fe3CoSb12 were prepared by sintering at 600 °C. The phases of samples were analyzed by X-ray diffraction and their thermoelectric properties were tested by electric constant instrument and laser thermal constant instrument. Experimental results show that, the major phases of bulk samples are skutterudite with impurity phase FeSb2. The electric resistivities of the samples increase with temperature rising at 100~500 °C. The bulk samples are P-type semiconductor materials. The Seebeck coefficients of the bulk Fe4Sb12 are higher than those of bulk Fe3CoSb12 samples at 100~200 °C but lower at 300~500 °C. The power factor of the bulk Fe4Sb12 samples decreases with temperature rising while that of bulk Fe3CoSb12 samples increases with temperature rising at 100~500 °C. The thermal conductivities of the bulk Fe4Sb12 samples are relatively higher than those of and Fe3CoSb12, which maximum value is up to 0.0974 Wm-1K-1. The ZT value of bulk Fe3CoSb12 increases with temperature rising at 100~500 °C, the maximum value is up to 0.031.The ZT values of the bulk Fe4Sb12 samples are higher than those of bulk Fe3CoSb12 at 100~300 °C while lower at 400~500 °C.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3920
Author(s):  
Martin Weber ◽  
Gábor Balázs ◽  
Alexander V. Virovets ◽  
Eugenia Peresypkina ◽  
Manfred Scheer

By reacting [{Cp‴Fe(CO)2}2(µ,η1:1-P4)] (1) with in situ generated phosphenium ions [Ph2P][A] ([A]− = [OTf]− = [O3SCF3]−, [PF6]−), a mixture of two main products of the composition [{Cp‴Fe(CO)2}2(µ,η1:1-P5(C6H5)2)][PF6] (2a and 3a) could be identified by extensive 31P NMR spectroscopic studies at 193 K. Compound 3a was also characterized by X-ray diffraction analysis, showing the rarely observed bicyclo[2.1.0]pentaphosphapentane unit. At room temperature, the novel compound [{Cp‴Fe}(µ,η4:1-P5Ph2){Cp‴(CO)2Fe}][PF6] (4) is formed by decarbonylation. Reacting 1 with in situ generated diphenyl arsenium ions gives short-lived intermediates at 193 K which disproportionate at room temperature into tetraphenyldiarsine and [{Cp‴Fe(CO)2}4(µ4,η1:1:1:1-P8)][OTf]2 (5) containing a tetracyclo[3.3.0.02,7.03,6]octaphosphaoctane ligand.


1990 ◽  
Vol 5 (6) ◽  
pp. 1169-1175 ◽  
Author(s):  
A. D. Berry ◽  
R. T. Holm ◽  
M. Fatemi ◽  
D. K. Gaskill

Films containing the metals copper, yttrium, calcium, strontium, barium, and bismuth were grown by organometallic chemical vapor deposition (OMCVD). Depositions were carried out at atmospheric pressure in an oxygen-rich environment using metal beta-diketonates and triphenylbismuth. The films were characterized by Auger electron spectroscopy, Nomarski and scanning electron microscopy, and x-ray diffraction. The results show that films containing yttrium consisted of Y2O3 with a small amount of carbidic carbon, those with copper and bismuth were mixtures of oxides with no detectable carbon, and those with calcium, strontium, and barium contained carbonates. Use of a partially fluorinated barium beta-diketonate gave films of BaF2 with small amounts of BaCO3.


2007 ◽  
Vol 1040 ◽  
Author(s):  
Hiroaki Yokoo ◽  
Naoki Wakiya ◽  
Naonori Sakamoto ◽  
Takato Nakamura ◽  
Hisao Suzuki

AbstractWe have grown indium nitride (InN) films using In buffer layer on an a-plane sapphire substrate under atmospheric pressure by halide CVD (AP-HCVD). Growth was carried out by two steps: deposition In buffer layer at 900 °C and subsequent growth of InN layer at 650 °C. In order to compare, we also grown InN films on an a-plane sapphire. The InN films are investigated on crystal quality, surface morphology and electrical property using high-resolution X-ray diffraction (HR-XRD), X-ray pole figure, scanning electron microscope (SEM), Hall measurement. The results show that the crystal quality, surface morphology and electrical property of InN films are improved by using In buffer layer.


1991 ◽  
Vol 243 ◽  
Author(s):  
A. Greenwald ◽  
M. Horenstein ◽  
M. Ruane ◽  
W. Clouser ◽  
J. Foresi

AbstractSpire Corporation has deposited strontium-barium-niobate by chemical vapor deposition at atmospheric pressure using Ba(TMHD), Sr(TMHD), and Nb ethoxide. Deposition temperature as 550°C in an isothermal furnace. Films were deposited upon silicon (precoated with silica), platinum, sapphire, and quartz. Materials were characterized by RBS, X-ray diffraction, EDS, electron, and optical microscopy. Electrical and optical properties were measured at Boston University.


FLUIDA ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 81-92
Author(s):  
Ade Yanti Nurfaidah ◽  
Dheana Putri Lestari ◽  
Rheisya Talitha Azzahra ◽  
Dian Ratna Suminar

Abstrak Nikel merupakan unsur logam yang penggunaannya sudah dikenal dalam industri, terutama pada pelapisan logam dan paduan. Pengolahan nikel dari bijih nikel laterit (jenis Limonit) menggunakan proses hidrometalurgi Atmospheric Pressure Acid Leaching (APAL) yang dinilai lebih ekonomis karena pemakaian energi dan biaya operasional cukup rendah. Media pelarut yang digunakan berupa larutan asam sulfat (H2SO4). Sebelum dilakukan pengolahan, karakterisasi bijih dilakukan menggunakan X-Ray Diffraction (XRD), X-Ray Flourscence (XRF), dan Scanning Electron Microscopy (SEM). Metode penelitian yang dilakukan yaitu literature review. Hasil review dari beberapa artikel jurnal menunjukkan bahwa kadar nikel yang terkandung pada suatu bijih sekitar 1,42%, 2,94 dan 0,95% serta sisanya adalah pengotor. Kondisi operasi yang tepat akan menghasilkan pemurnian nikel yang cukup tinggi. Parameter kondisi operasi yang dapat memengaruhi proses pemisahan nikel diantaranya suhu operasi yang ditunjukan dengan semakin meningkatnya % ekstraksi nikel seiring dengan kenaikan suhu. Selain suhu operasi, konsentrasi pelarut juga salah satu parameter yang mempengaruhi % ekstraksi karena semakin tinggi ion H+ akan memudahkan proses pelarutan sehingga akan mengikat Nikel Oksida yang terdapat pada bijih. Suhu paling optimal untuk menghasilkan nikel dengan kemurnian tinggi dalam operasi pelindian atmosferik adalah 90°C dan konsentrasi asam sulfat 5 M.  Kata Kunci: Nikel, pelindian, suhu, konsentrasi   Abstract  Nickel is a metal element whose use is well known in industry, especially in metal and alloy plating. The processing of nickel from laterite nickel ore (Limonite type) uses a hydrometallurgical process of Atmospheric Pressure Acid Leaching (APAL) which is considered more economical because energy consumption and operational costs are quite low. The solvent medium used is a solution of sulfuric acid (H2SO4). Prior to processing, ore characterization was carried out using X-Ray Diffraction (XRD), X-Ray Flourscence (XRF), and Scanning Electron Microscopy (SEM). The research method literature review article. The results of reviews from several journal articles show that the nickel content contained in an ore is around 1.42%, 2.94% and 0.95% and the rest is impurity. The right operating conditions will result in relatively high nickel refining. The operating condition parameters that can affect the nickel separation process include the operating temperature which is indicated by the increasing % nickel extraction along with the increase in temperature. In addition to operating temperature, solvent concentration is also one of the parameters that affects the% extraction because the higher the H+ ion will facilitate the dissolving process so that it will bind to the Nickel Oxide contained in the ore. The optimal temperature to produce high-purity nickel in atmospheric leaching operations is 90°C and a sulfuric acid concentration of 5 M. Keywords: Nickel, leaching, temperature, concentration


Sign in / Sign up

Export Citation Format

Share Document