CMOS/SOS VLSI Technology

1984 ◽  
Vol 33 ◽  
Author(s):  
Tai Sato ◽  
Jun Iwamura ◽  
Hiroyuki Tango ◽  
Katsuyuki Doi

ABSTRACTCMOS is considered as a prospective technology in the VLSI era because of its low power consumption and high driving capability. While ordinary bulk silicon CMOS devices are inferior to SOS CMOS devices in chip area, operation speed and latch-up problem due to the need for isolation wells. SOS is an inherent good partner of the CMOS circuits owing to the simple and perfect isolation. SOS technology, however, has the problem of high wafer cost. Consequently, SOS technology is best applied to high performance logic devices. Latest results of 8k-gate CMOS/SOS gate array and 16×16bit multipliers show 0.87ns 2-NAND gate delay and 27ns multiplication time, respectively, which compete with ECL devices. Application of SOS devices down to 1μm is also promising for very high speed operation. A 78ps gate delay is achieved by double solid phase epitaxy and 1μm technology. INTRO

2003 ◽  
Vol 764 ◽  
Author(s):  
Sei-Hyung Ryu ◽  
Anant K. Agarwal ◽  
James Richmond ◽  
John W. Palmour

AbstractVery high critical field, reasonable bulk electron mobility, and high thermal conductivity make 4H-Silicon carbide very attractive for high voltage power devices. These advantages make high performance unipolar switching devices with blocking voltages greater than 1 kV possible in 4H-SiC. Several exploratory devices, such as vertical MOSFETs and JFETs, have been reported in SiC. However, most of the previous works were focused on high voltage aspects of the devices, and the high speed switching aspects of the SiC unipolar devices were largely neglected. In this paper, we report on the static and dynamic characteristics of our 4H-SiC DMOSFETs. A simple model of the on-state characteristics of 4H-SiC DMOSFETs is also presented.


1990 ◽  
Vol 01 (03n04) ◽  
pp. 245-301 ◽  
Author(s):  
M.F. CHANG ◽  
P.M. ASBECK

Recent advances in communication, radar and computational systems demand very high performance electronic circuits. Heterojunction bipolar transistors (HBTs) have the potential of providing a more efficient solution to many key system requirements through intrinsic device advantages than competing technologies. This paper reviews the present status of GaAs and InP-based HBT technologies and their applications to digital, analog, microwave and multifunction circuits. It begins with a brief review of HBT device concepts and critical epitaxial growth parameters. Issues important for device modeling and fabrication technologies are discussed. The paper then highlights the performance and the potential impact of HBT devices and integrated circuits in various application areas. Key prospects for future HBT development are also addressed.


Author(s):  
Donald T. Eadie ◽  
Kevin Oldknow ◽  
Yasushi Oka ◽  
Ron Hui ◽  
Peter Klauser ◽  
...  

Expected growth of High Speed Rail (HSR) in North America will in many instances involve operation on existing infrastructure, shared with other traffic. This will pose many challenges, not least of which will be wheel and rail wear, and ride quality. This paper addresses how effective friction control can be employed to mitigate these factors and provide an important tool to the designers of new systems. Case studies describe successful use of train mounted solid stick LCF flange lubrication on high speed trains in East Asia and Japan. In each case, higher speed train operation has involved operation on areas of track with greater curvature than usual on dedicated high speed track. Appropriately designed LCF systems provide an inherently very high level of reliability and very low flange wear rates. Use of dry thin film lubricant technology has advantages over use of liquid lubricants (oil and grease) which can experience splash and fling off at high train speeds. Train mounted solid sticks provide greater consistency / reliability and ease of maintenance compared with wayside gauge face lubrication. Complementing practical field experience, modeling studies are presented which show the potential of high performance flange lubrication to allow for additional flexibility in designing wheel profiles for high speed rail. The ideal profile will balance vehicle stability (benefiting from lower conicity) and curving performance (benefiting from higher conicity). In a high speed train with long wheel base and high suspension stiffness operating in areas with significant curvature, finding an appropriate compromise becomes even more challenging than usual. Controlling flange wear at low rates with highly effective solid stick lubrication offers the opportunity to use wheel profiles providing lower effective conicity and therefore better ride quality, without compromising wheel life. This approach will be practical only in a scenario where a very high reliability wheel / rail lubrication system is employed.


1987 ◽  
Vol 108 ◽  
Author(s):  
R. C. Frye

ABSTRACTNew, high temperature superconducting materials could eventually be used for interconnections in electronic systems. Such interconnections would undoubtedly cost more to implement than conventional ones, so the most likely applications would be for complex, high-speed systems that could benefit from the performance advantages of a resistance-free interconnecting medium. The problem with conventional conductors in these systems is that the resistance of wires increases quadratically as dimensions are scaled down. The most important advantage offered by superconductors is that they are not linked to this scaling rule. Their principal limitation is the maximum current density that they will support and this determines the range of applications for which they are superior to conventional conductors. An analysis will be presented which examines the relative advantages of superconductors for different critical current densities, wire dimensions and system sizes.If their critical current densities are adequate, and if they can statisfy a number of processing criteria, then superconductors could find useful applications in a number of high performance electronic systems. The most likely applications will be those demanding very high interconnection densities. Several of these systems will be discussed.


1989 ◽  
Vol 111 (2) ◽  
pp. 188-194 ◽  
Author(s):  
A. I. Mahyuddin ◽  
H. Nahvi ◽  
K. Farhang ◽  
A. Midha

Certain manufacturing industries, including the semiconductor industry, are now moving toward very high-speed machinery requiring very small yet precise motions. The total path of a coupler point on harmonic motion-generating linkages, with relatively small input cranks, has been shown to be an approximate ellipse. Such linkages have been described to possess superior performance qualities for high speed machine application. Two special cases of the elliptical path are circular and linear paths. An investigation of the kinematic equations, which govern the motion of a coupler point, reveal the nonexistence of such exact paths, prompting the two theorems with proofs forwarded herein. Linkages are synthesized in an effort to find coupler points which trace “near-circle” and “near-straight-line” entire paths. Some interesting results are obtained in studying the motion behavior of coupler points on such linkages.


2000 ◽  
Vol 22 (3) ◽  
pp. 175-187 ◽  
Author(s):  
N. D. Codreanu ◽  
P. Svasta ◽  
V. Golumbeanu ◽  
L. Gál

The actual generations of integrated circuits are characterized, inter alia, by very high frequencies or very high speeds. The dramatic evolution ofthe semiconductor's technology establishes a greater “pressure” to the design and the manufacturing of the passive interconnection structure from PCB/MCM electronic modules. In these conditions the reference planes (power and ground planes) have a more and more important contribution. The paper intents to present the effect of different configuration reference planes on the characteristics of the high speed/high frequency interconnection lines. The first part deals with modeling and simulation of usual practical interconnection geometries. A computer modeling of meshed structures was realized and Spice models for a good compatibility with circuit simulators were obtained.S-,Y-,Z- parameters and radiation patterns were calculated, too. The second part contains measurements made by a vector network analyzer as regards to different practical configurations manufactured at Technical University of Budapest.


Author(s):  
Chaitanya CVS ◽  
Sundaresan C ◽  
P R Venkateswaran ◽  
Keerthana Prasad

Arithmetic unit is the most important component of modern embedded computer systems. Arithmetic unit generally includes floating point and fixed-point arithmetic operations and trigonometric functions. Multipliers units are the most important hardware structures in a complex arithmetic unit. With increase in chip frequency, the designer must be able to find the best set of trade-offs. The ability for faster computation is essential to achieve high performance in many DSP and Graphic processing algorithms and is why there is at least one dedicated Multiplier unit in all of the modern commercial DSP processors. Tremendous advances in VLSI technology over the past several years resulted in an increased need for high speed multipliers and compelled the designers to go for trade-offs among speed, power consumption and area. A novel modified booth multiplier design for high speed VLSI applications using pre-computation logic has been presented in this paper. The proposed architecture modeled using Verilog HDL, simulated using Cadence NCSIM and synthesized using Cadence RTL Compiler with 65nm TSMC library.The proposed multiplier architecture is compared with the existing multipliers and the results show significant improvement in speed and power dissipation.


Author(s):  
K D Dolbear ◽  
J C Watson

Railway vehicle service speeds are set to increase from the present 300 km/h. These developments are being spearheaded by the French, German, Italian and Japanese railways. It is also clear in other less glamorous areas such as freight and suburban operations, that the trends in vehicle design are going to put severe burdens on the braking technology available today. These initiatives included the advanced suburban bogie for British Railways. While it will be possible to squeeze some further improvements out of conventional products, it has become essential to initiate work on new materials which not only meet the immediate demands but address the requirements of the middle- and long-term. Some proposals such as carbon/carbon may be impractical from a cost point of view on anything other than exotic high-speed vehicles but studies involving ceramic to ceramic interfaces are proving interesting with a real possibility of providing high performance at an economical cost for a large spread of applications. The paper will discuss some of the challenges and opportunities to be grasped and solved.


Sign in / Sign up

Export Citation Format

Share Document