High Quality RTCVD Sidewall Spacer Dielectrics

1995 ◽  
Vol 387 ◽  
Author(s):  
D. S. Miles ◽  
M. R. Mirabedini ◽  
D. Venables ◽  
J. J. Wortman ◽  
D. M. Maher

AbstractRapid thermal chemical vapor deposition (RTCVD) has been investigated as an alternative to low pressure chemical vapor deposition (LPCVD) for formation of sidewall spacer dielectric. Silane (SiH 4 ) and tetraethylorthosilicate (TEOS) were chosen as the silicon gas sources in these studies. Reasonable deposition rates were obtained for RTCVD oxides, oxynitrides and nitrides for use in thin sidewall spacer application. Refractive index and etch rate measurements suggest that oxides deposited with a 2 % flow rate ratio of SiH 4 /N2O and annealed at 900 °C for 10 seconds produces films with excellent structural quality. Refractive index and wet etch rate both exhibit a linear dependence with the gas flow ratio. An increase in deposition pressure decreased the refractive index while increasing the etch rate. Oxide and oxynitride dielectrics formed using SiH 4 had a much superior step coverage over a wide range of aspect ratios than TEOS dielectrics. Dit and breakdown fields for oxides and oxynitrides with 3 atomic % nitrogen were comparable to that of thermal oxide indicating their good electrical quality. The results reported suggest that RTCVD sidewall spacers are a promising candidate for use in future MOSFET devices.

2018 ◽  
Vol 18 (11) ◽  
pp. 7590-7594 ◽  
Author(s):  
Peng Gu ◽  
Jinling Yu ◽  
Xiaolin Zeng ◽  
Shuying Cheng ◽  
Yunfeng Lai ◽  
...  

2001 ◽  
Vol 664 ◽  
Author(s):  
C. Y. Wang ◽  
E. H. Lim ◽  
H. Liu ◽  
J. L. Sudijono ◽  
T. C. Ang ◽  
...  

ABSTRACTIn this paper the impact of the ESL (Etch Stop layer) nitride on the device performance especially the threshold voltage (Vt) has been studied. From SIMS analysis, it is found that different nitride gives different H concentration, [H] in the Gate oxide area, the higher [H] in the nitride film, the higher H in the Gate Oxide area and the lower the threshold voltage. It is also found that using TiSi instead of CoSi can help to stop the H from diffusing into Gate Oxide/channel area, resulting in a smaller threshold voltage drift for the device employed TiSi. Study to control the [H] in the nitride film is also carried out. In this paper, RBS, HFS and FTIR are used to analyze the composition changes of the SiN films prepared using Plasma enhanced Chemical Vapor deposition (PECVD), Rapid Thermal Chemical Vapor Deposition (RTCVD) with different process parameters. Gas flow ratio, RF power and temperature are found to be the key factors that affect the composition and the H concentration in the film. It is found that the nearer the SiN composition to stoichiometric Si3N4, the lower the [H] in SiN film because there is no excess silicon or nitrogen to be bonded with H. However the lowest [H] in the SiN film is limited by temperature. The higher the process temperature the lower the [H] can be obtained in the SiN film and the nearer the composition to stoichiometric Si3N4.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744101 ◽  
Author(s):  
Bitao Chen ◽  
Yingke Zhang ◽  
Qiuping Ouyang ◽  
Fei Chen ◽  
Xinghua Zhan ◽  
...  

SiNx thin film has been widely used in crystalline silicon solar cell production because of the good anti-reflection and passivation effect. We can effectively optimize the cells performance by plasma-enhanced chemical vapor deposition (PECVD) method to change deposition conditions such as temperature, gas flow ratio, etc. In this paper, we deposit a new layer of SiNx thin film on the basis of double-layers process. By changing the process parameters, the compactness of thin films is improved effectively. The NH3passivation technology is augmented in a creative way, which improves the minority carrier lifetime. In sight of this, a significant increase is generated in the photoelectric performance of crystalline silicon solar cell.


2018 ◽  
Vol 780 ◽  
pp. 57-61 ◽  
Author(s):  
K.A. Mat-Sharif ◽  
Nasr Y.M. Omar ◽  
M.I. Zulkifli ◽  
S.Z. Muhd-Yassin ◽  
Y.K. Sin ◽  
...  

This paper presents the progress in the fabrication of highly doped thulium silica fiber. As much as 5.3 wt. % Tm alongside 7.1 wt. % Al (co-dopant) were incorporated into silica preform. The preform was fabricated using the Modified Chemical Vapor Deposition (MCVD)-chelate vapor delivery with soot-dopant stepwise technique. The preform was analyzed for several key properties such as refractive index variation along deposition length, dopants distribution profiles and UV-Vis absorption. The results showed a homogeneous dopants distribution with 4% RSD in the longitudinal refractive index along a 40 cm preform length. The UV-Vis absorption spectrum exhibited a strong absorption peak at 790 nm attributed to Tm 3H4 energy manifold.


2017 ◽  
Vol 10 (04) ◽  
pp. 1730003 ◽  
Author(s):  
Ruiwen Xue ◽  
Irfan H. Abidi ◽  
Zhengtang Luo

Over the past a few years, high-quality graphene preparation has been evolved from low-yield micromechanical exfoliation in including a wide range of production methods, in particular by chemical vapor deposition (CVD). Here, we review the state-of-the-art on synthesis of graphene using CVD method and the strategies to control the graphene grain size, number of layers and morphology, mainly focusing on the graphene growth that uses Cu as substrate. We highlight the success of the past research in the field and provide a review of the methods that were used for such controlled synthesis.


2008 ◽  
Vol 8 (5) ◽  
pp. 2703-2706 ◽  
Author(s):  
J. R. Vargas Garcia ◽  
E. M. Lazcano Ugalde ◽  
F. Hernandez Santiago ◽  
J. M. Hallen Lopez

The influence of the deposition conditions on the structural features and electrochromic properties of nickel oxide (NiO) films prepared by chemical vapor deposition has been investigated. NiO films have been prepared on fluorine doped tin oxide (FTO) coated glass substrates from nickel-acetylacetonate precursor and their electrochromic properties have been studied by cyclic voltammetry in a 0.1 M KOH solution at room temperature. Films exhibiting only the NiO phase were obtained at deposition temperatures higher than 450 °C in a wide range of reactor pressures (0.13 to 66.6 kPa). Particularly, NiO films prepared at 500–550 °C from 0.13 to 53.3 kPa are transparent in nature and exhibit a crystallite size varying from 10 to 60 nm. An appreciable anodic electrochromic change from transparent to black coloured resulted from a very porous surface morphology and film thickness of about 3.5 μm. The electrochromic change was maintained over 3000 switching cycles. Nanostructured 3.5 μm-thick NiO films showed a maximum difference in optical transmittance of about 40% in the near-infrared region. These results make the nanostructured NiO films comparables with those prepared by other deposition techniques.


2003 ◽  
Vol 799 ◽  
Author(s):  
Peng Lu ◽  
J. H. Edgar ◽  
J. Pomeroy ◽  
M. Kuball ◽  
H. M. Meyer ◽  
...  

ABSTRACTThe parameters necessary to deposit oriented rhombohedral boron phosphide (B12P2) thin films on on-axis Si-face 6H-SiC(0001) substrates by chemical vapor deposition are reported. Ultra high purity BBr3 and PBr3 were used as reactants, with hydrogen as the carrier gas. The BBr3 to PBr3 flow rate ratio was adjusted to obtain good surface morphology of the B12P2 films. BBr3 to PBr3 ratios in the range of 1 to 1.5 produced smooth surfaces and moderate growth rates of 10μm/hr. Higher growth rates were obtained by increasing the BBr3 flow rate, but the surfaces became very rough. The c-axis of the B12P2 film was aligned with the c -axis of the substrate at temperatures between 1650°C-1700°C. The surface morphologies were investigated by SEM and the crystalline properties of the films were characterized by XRD and Raman spectroscopy.


1981 ◽  
Vol 39 (4) ◽  
pp. 354-356 ◽  
Author(s):  
Mitsumasa Suzuki ◽  
Hiroshi Onodera ◽  
Takeshi Anayama ◽  
Gin‐ichiro Oya ◽  
Yutaka Onodera

Sign in / Sign up

Export Citation Format

Share Document