Synchrotron Radiation Induced Optical Luminescence from Porous Silicon: Recent Observations

1996 ◽  
Vol 452 ◽  
Author(s):  
I. Coulthard ◽  
T. K. Sham ◽  
D.-T. Jiang ◽  
K. H. Tan

AbstractPhotoluminescence from porous silicon was examined using synchrotron radiation as an excitation source. The tunability of the excitation source permitted a wide range of excitation energies ranging from VUV to X-rays. This permitted site selective excitation where specific core levels (i.e. Si-K, O-K, Si-2p) were probed. In high porosity samples, luminescence bands of both surface and bulk origins were observed. All experiments exhibited a common luminescence maximum typically in the orange-red region of the visible spectrum. At certain specific excitation energies particularly in the VUV region additional peaks related to sites with oxygen character were also observed. The VUV excitation luminescence spectra of the porous silicon remarkably resembled that of oxygen deficient amorphous silicon dioxide glasses.

1972 ◽  
Vol 14 ◽  
pp. 642-646
Author(s):  
G. A. Gurzadyan ◽  
J. B. Ohanesyan

The problem of energy calibration of astrophysical apparatus is essential for every or almost every space experiment. The utilization of synchrotron radiation from an electronic accelerator should perhaps be taken as an ideal solution of this problem, if of course, such a possibility is available.Special equipment for the extraction of synchrotron radiation has been devised at the circular electron accelerator with a maximum electron energy of 6 GeV, in the Physics Institute of Erevan (Gurzadyan and Ohanesyan, 1972). The equipment is designed primarily for the energy calibration of astronomical apparatus operating in a vacuum and hard ultraviolet and X rays. However, the equipment can also be applied to a wide range of experiments relating to the physics of solids, crystallography, physics of thin films, X rays, etc.


2015 ◽  
Vol 22 (5) ◽  
pp. 1155-1162 ◽  
Author(s):  
T. S. Toellner ◽  
J. Collins ◽  
K. Goetze ◽  
M. Y. Hu ◽  
C. Preissner ◽  
...  

A high-resolution silicon monochromator suitable for 21.541 keV synchrotron radiation is presented that produces a bandwidth of 0.27 meV. The operating energy corresponds to a nuclear transition in151Eu. The first-of-its-kind, fully cryogenic design achieves an energy-alignment stability of 0.017 meV r.m.s. per day, or a 100-fold improvement over other meV-monochromators, and can tolerate higher X-ray power loads than room-temperature designs of comparable resolution. This offers the potential for significantly more accurate measurements of lattice excitation energies using nuclear resonant vibrational spectroscopy if combined with accurate energy calibration using, for example, high-speed Doppler shifting. The design of the monochromator along with its performance and impact on transmitted beam properties are presented.


MRS Bulletin ◽  
1999 ◽  
Vol 24 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Pedro A. Montano ◽  
Hiroyuki Oyanagi

X-rays have found a wide range of applications in chemistry, physics, and materials engineering since their discovery in 1895 by W. Roentgen. The materials science community uses x-ray-based techniques extensively for characterization of materials. In the 1970s a new tunable source of x-rays from the radiation produced by synchrotron accelerators emerged. Synchrotron radiation (SR) is an intense and forward-focused beam of radiation that is emitted when the path of an electron traveling at almost the speed of light is bent by a magnetic field. Figure 1 illustrates the evolution of radiation intensity provided by various x-ray sources. In situ SR techniques provide real-time observation of atomic arrangements with high spatial sensitivity and precision, which are important features not only in fundamental materials research, but also in the development of novel processing techniques and in the search for new exotic materials. A major advantage of SR is that it covers a wide range of wavelengths continuously from infrared to gamma rays. This feature is attractive since a wealth of detailed information on the electronic and structural properties of materials can be obtained by optimizing the wavelength of the radiation.Since the establishment of “first generation” facilities in the early 1970s, the x-ray emittance from synchrotron storage rings, where electrons traveling at almost relativistic speed s are constrained by magnetic fields to follow curved trajectories, has shown dramatic improvements. See Table I for an extensive list of SR facilities presentiy in use throughout the world.


2019 ◽  
Vol 61 (5) ◽  
pp. 867
Author(s):  
В.А. Пустоваров ◽  
К.В. Ивановских ◽  
Ю.Е. Хатченко ◽  
В.Ю. Иванов ◽  
M. Bettinelli ◽  
...  

AbstractThe spectroscopic characteristics and luminescence decay kinetics of Sr_9Sc(PO_4)_7:Pr^3+(1%) were investigated using synchrotron radiation of ultraviolet (UV), vacuum ultraviolet (VUV) and X-ray ranges, as well as pulsed cathodoluminescence (PCL) methods at temperatures of 10, 90, and 295 K. The luminescence spectra contain three groups of bands and lines. In the UV range, the observed bands correspond to interconfigurational 5 d → 4 f transitions in Pr^3+ ions. In the visible spectrum, the wide luminescence band of defects dominates, as well as narrow lines associated with intraconfigurational 4 f → 4 f transitions in Pr^3+ ions. When excited by an electron beam (5 Hz), the main component with a decay time τ ∼ 17 ns dominates in the decay kinetics of the 5 d → 4 f luminescence. The decay kinetics of 5 d → 4 f luminescence upon excitation with high-frequency (τ ∼ 8 MHz) synchrotron radiation of the X-ray range contains a fast component (τ ∼ 15 ns) against the background of the slow component of the μs-range. An effective nonradiative energy transfer is observed from impurity centers to defects, as well as from the host to Pr^3+ ions and defects.


1996 ◽  
Vol 175 ◽  
pp. 419-420
Author(s):  
M.M. Romanova ◽  
R.V.E. Lovelace

A model has been developed for impulsive VLBI jet formation and gamma ray outbursts of Blazars. Propagation of newly expelled matter in the old channel of a jet is calculated supposing that the main driving force is the electromagnetic field. The new outflowing matter overtakes the old matter and forms double, fast or slow magnetosonic shock fronts. In the region of the fronts, the number of particles and their energy increase continuously with propagation time from the central object (Romanova and Lovelace, 1995). Accelerated electrons and positrons in the front interact with a diffuse field of UV photons (inverse Compton scattering), with the magnetic field (synchrotron radiation), and with synchrotron photons (SSC processes), thus creating radiation in a very wide range of bands. The self-consistent relativistic equations for the number of particles, the momentum, energy, and magnetic flux in the front are derived and solved numerically (Lovelace and Romanova, 1995). The time-dependent apparent luminosities in the radio to gamma ray bands are calculated taking into account the Doppler boost of the photons. The model predicts a short outburst of radiation in gamma rays (weeks or so) connected with Compton processes, a sharp (less than a day) outburst in the X-rays with a smooth decrease of the luminosity connected with SSC processes, and synchrotron radiation changing from infrared to radio bands (Fig. 1A). The lepton distribution function was taken as fl = K1/γ2 in the main energy containing range, γ1 ≤ γ ≤ γ2, steeper distribution fl = K2/γ3 for γ2 ≤ γ ≤ γ3, and even steeper for γ ≥ γ3. For γ < γ1, fl is assumed negligible as a result of synchrotron self-absorption. The lowest frequency f(syn1), determined by self-absorption, corresponds initially to the infrared band, and later - to the radio band. From Fig.1B, one can see that radio at 3 mm may start to appear after 2 weeks after outburst. But its maximum may correspond to much later times (months), because f(syn1) decreases slowly with time. The appearance of the new VLBI component in QSO 0528+134, which approximately coincides with the strong gamma-ray flash and with the beginning of the strong mm radio outburst (Krichbaum, et al. 1995; Pohl, et al. 1995), supports the proposed model.Both authors were supported in part by NSF grant AST-9320068. MMR is grateful to RFBR and Organizers of the Symposium for the partial support.


Author(s):  
Y. Kokubo ◽  
W. H. Hardy ◽  
J. Dance ◽  
K. Jones

A color coded digital image processing is accomplished by using JEM100CX TEM SCAN and ORTEC’s LSI-11 computer based multi-channel analyzer (EEDS-II-System III) for image analysis and display. Color coding of the recorded image enables enhanced visualization of the image using mathematical techniques such as compression, gray scale expansion, gamma-processing, filtering, etc., without subjecting the sample to further electron beam irradiation once images have been stored in the memory.The powerful combination between a scanning electron microscope and computer is starting to be widely used 1) - 4) for the purpose of image processing and particle analysis. Especially, in scanning electron microscopy it is possible to get all information resulting from the interactions between the electron beam and specimen materials, by using different detectors for signals such as secondary electron, backscattered electrons, elastic scattered electrons, inelastic scattered electrons, un-scattered electrons, X-rays, etc., each of which contains specific information arising from their physical origin, study of a wide range of effects becomes possible.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S558-S558
Author(s):  
Masahiro Tamaki ◽  
Takashi Mizobe ◽  
Keiji Kidoguchi ◽  
Junnji Koyama ◽  
Takeshi Kondoh ◽  
...  

2020 ◽  
Vol 21 (21) ◽  
pp. 8151
Author(s):  
Sharda Kumari ◽  
Shibani Mukherjee ◽  
Debapriya Sinha ◽  
Salim Abdisalaam ◽  
Sunil Krishnan ◽  
...  

Radiation therapy (RT), an integral component of curative treatment for many malignancies, can be administered via an increasing array of techniques. In this review, we summarize the properties and application of different types of RT, specifically, conventional therapy with x-rays, stereotactic body RT, and proton and carbon particle therapies. We highlight how low-linear energy transfer (LET) radiation induces simple DNA lesions that are efficiently repaired by cells, whereas high-LET radiation causes complex DNA lesions that are difficult to repair and that ultimately enhance cancer cell killing. Additionally, we discuss the immunogenicity of radiation-induced tumor death, elucidate the molecular mechanisms by which radiation mounts innate and adaptive immune responses and explore strategies by which we can increase the efficacy of these mechanisms. Understanding the mechanisms by which RT modulates immune signaling and the key players involved in modulating the RT-mediated immune response will help to improve therapeutic efficacy and to identify novel immunomodulatory drugs that will benefit cancer patients undergoing targeted RT.


2021 ◽  
Vol 22 (3) ◽  
pp. 1418
Author(s):  
Elham Shahhoseini ◽  
Masao Nakayama ◽  
Terrence J. Piva ◽  
Moshi Geso

This study examined the effects of gold nanoparticles (AuNPs) and/or ionizing radiation (IR) on the viability and motility of human primary colon epithelial (CCD841) and colorectal adenocarcinoma (SW48) cells as well as human primary epidermal melanocytes (HEM) and melanoma (MM418-C1) cells. AuNPs up to 4 mM had no effect on the viability of these cell lines. The viability of the cancer cells was ~60% following exposure to 5 Gy. Exposure to 5 Gy X-rays or 1 mM AuNPs showed the migration of the cancer cells ~85% that of untreated controls, while co-treatment with AuNPs and IR decreased migration to ~60%. In the non-cancerous cell lines gap closure was enhanced by ~15% following 1 mM AuNPs or 5 Gy treatment, while for co-treatment it was ~22% greater than that for the untreated controls. AuNPs had no effect on cell re-adhesion, while IR enhanced only the re-adhesion of the cancer cell lines but not their non-cancerous counterparts. The addition of AuNPs did not enhance cell adherence. This different reaction to AuNPs and IR in the cancer and normal cells can be attributed to radiation-induced adhesiveness and metabolic differences between tumour cells and their non-cancerous counterparts.


Sign in / Sign up

Export Citation Format

Share Document