IIIB- Nitride Semiconductors for High Temperature Electronic Applications

1999 ◽  
Vol 572 ◽  
Author(s):  
X. Bai ◽  
D. M. Hill ◽  
M. E. Kordesch

ABSTRACTThin films of ScN and YN were grown on silicon, quartz and sapphire using metal evaporation and an RF atomic nitrogen source. YN decomposes on contact with water vapor, and only AlN capped films could be stabilized. ScN is stable in air and water, and thin films of this material deposited at temperatures between 300 and 900 °C show a substrate-dependent film texture. Typical growth rates were ∼ 0.1 nm/second with a 300W N discharge at about 0.1 mTorr Nitrogen pressure. Structural characterization by x-ray diffraction, infrared transmission spectroscopy and Hall effect measurements on n-type ScN and the fabrication of p-n junctions of n- type ScN with silicon are presented.

1995 ◽  
Vol 401 ◽  
Author(s):  
H. Schuler ◽  
G. Weissmann ◽  
C. Renner ◽  
S. Six ◽  
S. Klimm ◽  
...  

AbstractThin films of V2O3 with thickness from 20 to 450 nm were deposited on (0001) oriented sapphire substrates by reactive e-beam evaporation. LEED, x-ray diffraction and AFM studies show highly oriented grains with a lateral size of 50 to 800 nm, dependent on substrate temperature and deposition rate. The films were characterized by optical and infrared transmission, electrical resistance and Hall effect measurements. Films grown directly on the Al2O3-substrate show a very broad metal-insulator (MI) transition as a function of temperature. The width of the transition decreases with increasing film thickness. The insertion of Cr2O3 buffer layers decreases the transition width by a further factor of three. The electronic properties of the films can be drastically influenced by the growth conditions.


2014 ◽  
Vol 28 (26) ◽  
pp. 1450210 ◽  
Author(s):  
Zhong Hua ◽  
Xiangcheng Meng ◽  
Yaming Sun ◽  
Wanqiu Yu ◽  
Dong Long

The stacked precursors were deposited on glass substrates from Cu , Sn and ZnS targets by magnetron sputtering with six kinds of stacking sequences. The precursors were sulfurized at 500°C for 2 h in an atmosphere of sulfur. The properties of thin films such as microstructure, morphology, chemical composition, electrical and optical properties of the films were investigated by X-ray diffraction (XRD), scanning election microscopy (SEM), energy dispersive spectroscopy (EDS), Hall effect measurements and UV-visible spectrophotometer (UV-VIS). The results show that the thin film after sulfurizing at 500°C using the stacking order of Cu / Sn / ZnS /glass is the best absorber layer for Cu 2 ZnSnS 4 thin films solar cell among the six kinds of stacking sequences.


MRS Advances ◽  
2019 ◽  
Vol 4 (49) ◽  
pp. 2665-2671
Author(s):  
Takaki Kimura ◽  
Kan Hachiya ◽  
Takashi Sagawa

ABSTRACTNb-doped TiO2 thin-films were prepared on fluorine-doped tin oxide (FTO) coated glass directly with niobium ethoxide and TiCl4 in water under the acidic conditions with several concentrations of HCl at 70-90 °C for 45 minutes or 1 hour followed by rinsing with water and annealing at 100 °C for 1 hour. Thin films of 0-1% Nb-doped TiO2 with rutile phase on FTO were obtained, which were confirmed through X-ray diffraction analyses and measurements of energy dispersive X-ray spectroscopy (EDS). Scanning electron microscopy observations equipped with EDS revealed that higher growth temperature over 90 °C is required for doping of Nb. While higher concentration of HCl resulted in much amount of Nb-doping. Band gap of rutile TiO2 gradually reduced from 3.3 eV to 3.23 eV through Nb-doping from 0% to 1%, which were estimated from uv-vis absorption spectroscopic analyses. Hall effect measurements by taking van der Pauw method confirmed that 2.26 times increase of the carrier density and 1.78 times enhancement of the conductivity have been achieved in the case of 1% Nb-doping.


2019 ◽  
Vol 7 (2) ◽  
pp. 14-18 ◽  
Author(s):  
Mohammad G. Faraj ◽  
Askander K. Kaka ◽  
Halo D. Omar

In this paper, copper oxide (CuO) thin films were deposited on polyimide (PI) Plastic substrates with spray pyrolysis technique with different temperatures (i.e. 250–300 °C). All the deposited films were characterized by X-ray diffraction (XRD) and Hall Effect measurements for the Structural and electrical properties. Effects of substrate temperature on the structural and electrical characteristics of the films were studied. The X-ray diffraction patterns’ results reveal that the all of CuO films have a face centered cubic structure. The crystallite grain size was calculated using Scherrer formula and it is found that the substrate temperature (300 0C) has maximum crystallite grain size (81.2 nm). Hall Effect measurements showed that all the films are of p-type conductivity. Depending on the substrate temperature, Hall measurement showed that the electrical resistivity and the carrier concentration varied in the range 77.4 Ω.cm to 52.7 Ω.cm and  6.3 x1015 cm-3 to  10.1 x1015 cm-3.


2018 ◽  
Vol 34 (5) ◽  
pp. 2325-2331
Author(s):  
Reuben Seth Richter ◽  
A. Yaya ◽  
D. Dodoo-Arhin ◽  
B. Agyei-Tuffour ◽  
Robinson Juma Musembi ◽  
...  

In this work, the effect of indium (In) and gallium (Ga) dopants on the structural, optical and electrical properties of ZnO thin films was studied. ZnO thin films were deposited on glass substrates at 400°C using the spray pyrolysis deposition technique. X-ray diffraction (XRD) results indicated that both undoped and doped ZnO films had (002) preferred orientation. The undoped ZnO films were found to exhibit high transmittance above 80%, while indium-doped (In:ZnO) and gallium-doped (Ga:ZnO) films had transmittance above 60% and 70% respectively. From the Hall Effect measurements, doping improved the conductivity of the ZnO thin films however, In:ZnO films showed higher electrical conductivity compared to Ga:ZnO films. Electron probe microanalysis (EPMA) results were used to confirm the presence of the respective dopants in the thin film samples.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.


2006 ◽  
Vol 88 (25) ◽  
pp. 252901 ◽  
Author(s):  
Jyrki Lappalainen ◽  
Vilho Lantto ◽  
Johannes Frantti ◽  
Jussi Hiltunen

Sign in / Sign up

Export Citation Format

Share Document