Nanometer Scale Domain Measurement of Ferroelectric Thin Films Using Scanning Nonlinear Dielectric Microscopy

2000 ◽  
Vol 655 ◽  
Author(s):  
Hiroyuki Odagawa ◽  
Kaori Matsuura ◽  
Yasuo Cho

AbstractA very high-resolution scanning nonlinear dielectric microscope with nanometer resolution was developed for the observation of ferroelectric polarization. We demonstrate that the resolution of the microscope is of a sub-nanometer order by measurement of domains in PZT and SBT thin films. The experimental result shows that nano-sized 180° c-c ferroelectric domain with the width of 1.5 nm for PZT thin film are observed. The result also shows that the resolution of the microscope is less than 0.5 nm for the PZT thin film.

2002 ◽  
Vol 748 ◽  
Author(s):  
Hiroyuki Odagawa ◽  
Yasuo Cho

ABSTRACTA scanning nonlinear dielectric microscope (SNDM) probe, called theε311 -type probe, and a system to measure the ferroelectric polarization component parallel to the surface using rotating electric field have been developed. This is achieved by measuring the ferroelectric material's nonlinear dielectric constant ε311 instead of ε333, which is measured in conventional SNDM. Experimental result shows that we can successfully determine polarization component parallel to the surface. The SNDM system can measure polarization at any angle from the surface normal which is often of interest.


2011 ◽  
Vol 239-242 ◽  
pp. 891-894 ◽  
Author(s):  
Tsung Fu Chien ◽  
Jen Hwan Tsai ◽  
Kai Huang Chen ◽  
Chien Min Cheng ◽  
Chia Lin Wu

In this study, thin films of CaBi4Ti4O15with preferential crystal orientation were prepared by the chemical solution deposition (CSD) technique on a SiO2/Si substrate. The films consisted of a crystalline phase of bismuth-layer-structured dielectric. The as-deposited CaBi4Ti4O15thin films were crystallized in a conventional furnace annealing (RTA) under the temperature of 700 to 800°C for 1min. Structural and morphological characterization of the CBT thin films were investigated by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM). The impedance analyzer HP4294A and HP4156C semiconductor parameters analyzer were used to measurement capacitance voltage (C-V) characteristics and leakage current density of electric field (J-E) characteristics by metal-ferroelectric-insulator- semiconductor (MFIS) structure. By the experimental result the CBT thin film in electrical field 20V, annealing temperature in 750°C the CBT thin film leaks the electric current is 1.88x10-7A/cm2and the memory window is 1.2V. In addition, we found the strongest (119) peak of as-deposited thin films as the annealed temperature of 750°C


2000 ◽  
Vol 655 ◽  
Author(s):  
Masanori Okuyama ◽  
Toshiyuki Nakaiso ◽  
Minoru Noda

AbstractSr2(Ta1划x, Nbx)2O7(STN) ferroelectric thin films have been prepared on SiO2/Si(100) substrates by the pulsed laser deposition (PLD) method. Preferential (110) and (151)-oriented STN thin films are deposited at a low temperature of 600°C in N2O ambient gas at 0.08 Torr. A counterclockwise C-V hysteresis was observed in the metal-ferroelectric-insulator-semiconductor (MFIS) structure using Sr2(Ta0.7, Nb0.3)2O7 on SiO2/Si deposited at 600°C. Memory window in the C-V curve spreads symmetrically towards both positive and negative directions when applied voltage increases and the window does not change in sweep rates ranging from 0.1 to 4.0×103 V/s. The C-V curve of the MFIS structure does not degrade after 1010 cycles of polarization reversal. The gate retention time is about 3.0×103 sec when the voltages and time of write pulse are ±15V and 1.0 sec, respectively, and hold bias was -0.5 V.


2002 ◽  
Vol 16 (03) ◽  
pp. 473-480 ◽  
Author(s):  
JULIA M. WESSELINOWA ◽  
STEFFEN TRIMPER

Based on an Ising model in a transverse field (TIM) and using a Green's function formalism the critical exponents of the polarization β and of the longitudinal susceptibility γ are calculated for a ferroelectric thin film consisting of N layers. The exponents depends on the number of layers in a significant manner. Whereas for N=3 layers the exponents are β=0.131 and γ=1.739 there is a change over to β=0.315 and γ=1.239 in case of N=30. The datas are in a good agreement with predictions for 2D and 3D Ising systems. Using scaling laws other exponents like α, δ, η and ν are obtained, too.


1998 ◽  
Vol 541 ◽  
Author(s):  
F. Ayguavives ◽  
B. Ea-Kim ◽  
B. Agius ◽  
I. Vickridge ◽  
A. I. Kingon

AbstractLead zirconate titanate (PZT) thin films have been deposited in a reactive argon/oxygen gas mixture from a metallic target of nominal composition Pb1.1(Zr0.4Ti0.6)O3 by rf magnetron sputtering on Si substrates and RuO2/SiO2/Si structures. During plasma deposition, in situ Optical Emission Spectroscopy (OES) measurements clearly show a correlation between the evolution of characteristic atomic emission line intensities and the thin film composition determined by simultaneous Rutherford Backscattering Spectroscopy (RBS) and Nuclear Reaction Analysis (NRA). As a result, the cathode surface state can be monitored by OES to ensure a good compositional transferability from the target to the film and reproducibility of thin film properties for given values of deposition parameters. Electrical properties and crystallization have been optimized with a 90 nm PZT thin film grown on RuO2 electrodes. These PZT films, annealed with a very modest thermal budget (550°C) are fatigue-free and show very low leakage currents (J=2.10−8 A/cm2 at 1 V). The use of a metallic target allows us to control the oxygen incorporation in the PZT thin film and also, using 18O as a tracer, to study the oxygen vacancy migration which plays a key role in fatigue, leakage current, and electrical degradation/breakdown in PZT thin films.


1999 ◽  
Vol 596 ◽  
Author(s):  
Tingkai Li ◽  
Sheng Teng Hsu ◽  
Yufei Gao ◽  
Mark Engelhard

AbstractThree kinds of oriented electrodes of Pt, Ir and Pt/Ir electrodes were prepared using electron beam evaporation techniques for deposition of PZT thin films. An oxide MOCVD reactor with liquid delivery system was used for the growth of PZT thin films. [Pb(thd)2], Zr(TMHD)4 and Ti(IPO)4 were dissolved in a mixed solvent of tetrahydrofuran or butyl ether, isopropanol and tetraglyme to form a precursor source. The deposition temperature and pressure were 500 - 650°C and 5 - 10 Torr, respectively. The experimental results showed PZT thin film deposited on various electrodes had different phase formation, microstructure and ferroelectric property. The X-ray patterns showed the perovskite phase of PZT was formed on both Ir and Pt/Ir electrodes at 550°C. The grain size of the PZT thin film increases after a further, higher temperature annealing. The as-deposited PZT thin film on Pt electrode exhibits pyrochlore phase at 550°C. The phase is transformed to perovskite phase after 650°C annealing. The experimental results also indicated that the MOCVD PZT thin film on Pt/Ir exhibits better ferroelectric and electrical properties compared to those deposited on Pt and Ir electrodes. A 300 nm thick PZT thin film on Pt/Ir electrode has a square, well saturated, and symmetrical hysteresis loop with 2Pr value of 40 μC/cm2 and 2Ec of 73 kV/cm at an applied voltage of 5 V. The hysteresis loop of the PZT thin film is almost saturated at 2 V. The leakage current of the film is 6.16 × 10−7 A/cm2 at 100 KV/cm. The electrode effects on ferroelectric properties of PZT thin films also have been investigated.


2013 ◽  
Vol 302 ◽  
pp. 8-13
Author(s):  
Shun Fa Hwang ◽  
Wen Bin Li

PZT thin film was fabricated by using RF-sputtering process, and platinum was used as bottom electrodes. The sputtering gases were Ar:O2=25:0 sccm, Ar:O2=20:5 sccm, or Ar:O2=15:10 sccm. After sputtering, the PZT film was annealed for 5 minutes under O2 gas environment and at the temperature of 600 0C, 650 0C, 700 0C or 750 0C. To judge the quality of the deposited PZT film, its physical properties and electric properties were evaluated. The results indicate that the best crystallization temperature of PZT thin film is about 700 0C. Also, the roughness of the PZT thin film becomes larger with the increasing of annealing temperature. By adding more oxygen in the sputtering gas, one could have better crystallization of the PZT film. As for the electrical properties, the leakage current of PZT thin film increases with the increasing of annealing temperature. Furthermore, the ferroelectric property is affected by the crystallization amount of perovskite, the thickness of PZT thin film, and the diffusion situation between the bottom electrode and the PZT film.


1997 ◽  
Vol 493 ◽  
Author(s):  
Han Wook Song ◽  
Joon Sung Lee ◽  
Dae-Weon Kim ◽  
Kwang Ho Kim ◽  
Tae-Hyun Sung ◽  
...  

ABSTRACTMgO thin films were deposited on Si(100) substrate with different temperatures from 500 °C to 800 °C and different e-beam powers from 25W to 100W using e-beam evaporation method. Pb(Zr0.53Ti0.47)O3(PZT) thin films were deposited on MgO/Si(100) substrates with different drying temperatures from 190 °C to 310 °C using sol-gel technique. If there were no buffer layer between the PZT thin film and Si substrate, the peaks corresponding to perovskite PZT phase were not observed. However the buffer layer were inserted between the PZT thin film and Si substrate, it was possible to fabricate perovskite PZT phase. The barrier effects of MgO thin film to the interdiffusion of Pb were investigated by AES study. Optimum thickness of MgO at which PZT/MgO/Si structure shows P-E hysteresis was calculated, and the hysteresis was tested for PZT/MgO/Si structures with different MgO thicknesses.


Sign in / Sign up

Export Citation Format

Share Document