High Temperature, High-Pressure Fluid Connections for Power Micro-Systems

2000 ◽  
Vol 657 ◽  
Author(s):  
Todd S. Harrison ◽  
Adam P. London ◽  
S. Mark Spearing

ABSTRACTHigh power density micro-systems offer the potential to revolutionize technologies for portable electrical power generation, propulsion and flow control. Devices are being designed and fabricated which include micro-gas turbine engines, micro-rocket engines, micro-motor- compressors, micro-pumps and micro-hydraulic transducers. Common to all of this family of devices is the need to create packages that service the devices, and interface them with the macro-scale environment. Fluid interconnections are a particularly demanding packaging element for this class of devices. In order to achieve high power densities, these devices are required to operate at high pressures and, in some cases, high temperatures. This paper describes the design, analysis, fabrication and testing of high-pressure, high temperature fluid connections for the micro-engine and micro-rocket applications. A glass bonding technology has been developed to allow the creation of multiple fluidic connections consisting of Ni/Fe alloy tubes to silicon devices. Key strategies to achieve high strength connections are: to minimize the mismatch in coefficients of thermal expansion between the components, to eliminate voids from the glass and to promote adequate wetting of the glass to both the tubes and the silicon. Mechanical test results are presented which correlate the strength and statistical reliability of such bonds to the processing conditions, choice of glass and surface preparation prior to bonding. Successful examples of packaged micro-engine and micro-rocket devices are presented.

2015 ◽  
Vol 1092-1093 ◽  
pp. 1519-1524 ◽  
Author(s):  
Jing Xu ◽  
Yu Ting Wang ◽  
Xiao Yu Wang ◽  
Xin Ru Li ◽  
Qian Xin Dang

Effect of high-temperature soybean meal hydrolysates was to be studied in this paper. Hhigh-temperature soybean meal was treated by high pressure. And Alcalase 2.4 L was used to hydrolyze high-temperature soybean meal, three kinds of solutions with relative molecular mass of > 10 000 Da, 5000 Da – 10 000 Da and < 5 000 Da were obtained by ultrafiltration of hydrolysates, and they were administrated mice by gastric perfusion, respectively. Levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and malondialdehyde (MDA) in liver were separately tested with reagent kits. Results showed that SOD and GSH-PX activities were significantly improved and MDA content was reduced in liver of mice by hydrolysates, which indicated that high-temperature soybean meal hydrolysates can improve antioxidant indexes of mice and enhance antioxidation capacity of body.


2008 ◽  
Vol 403 ◽  
pp. 77-80 ◽  
Author(s):  
Peter Kroll

A combination of first-principle and thermochemical calculations is applied to compute the phase diagrams of rhenium-nitrogen and of ruthenium-nitrogen at elevated temperature and high pressure. We augment total energy calculations with our approach to treat the nitrogen fugacity at high pressures. We predict a sequential nitridation of Re at high-pressure/high-temperature conditions. At 3000 K, ReN will form from Re and nitrogen at about 32 GPa. A ReN2 with CoSb2-type structure may be achieved at pressures exceeding 50 GPa at this temperature. Marcasite-type RuN2 will be attainable at 3000 K at pressures above 30 GPa by reacting Ru with nitrogen.


2017 ◽  
Vol 46 (30) ◽  
pp. 9750-9754 ◽  
Author(s):  
K. Niwa ◽  
H. Ogasawara ◽  
M. Hasegawa

The incompressible pyrite form of group 14 elemental pernitrides synthesized at high pressures and high temperatures.


1983 ◽  
Vol 37 (6) ◽  
pp. 508-512 ◽  
Author(s):  
Haruhiko Kataoka ◽  
Shiro Maeda ◽  
Chiaki Hirose ◽  
Koichi Kajiyama

N2 coherent anti-Stokes Raman spectroscopy (CARS) thermometry over a pressure range 1 to 50 atm has been studied. The CARS profile at high pressure and high temperature was recorded by using the ignition inside a running engine cylinder. The observed Q-branch profile was theoretically fitted by incorporating the collisional narrowing effect, serving for the temperature determination at various pressures. Because of the narrowing effect, the apparent band width showed little change with pressure above 5 atm in general. It has been suggested that the band width at 1/5 of the maximum height can be a useful measure of temperature, while the usual half-width turns out to be hardly practicable at high pressures.


LED operating under high-temperature condition badly affects reliability. To reduce junction temperature of LED is crucial. In this paper, luminous intensity and photo conversion efficient with respect to electrical power are discussed. Moreover, three arrangements for LED module are suggested, and design parameters are discussed in terms of the number of LEDs and distance between each LED. In order to evaluate thermal performance of designed the module, computer simulation was conducted. Distance between each LED is selected by 7.6, 9.6, and 13.3mm for 80, 128, and 240 LEDs, respectively and unit heat flux is calculated to be 0.47W/mm2 , 0.29W/mm2 , 0.16W/mm2 for 80, 128, and 240 LEDs, respectively. In this case, Maximum temperature on the PCB was 67.8C, 62.5C, and 57.1C for 80, 128, and 240 LEDs, respectively. The Maximum temperature and unit heat flux was reduced by 15.7% and 66%, respectively, when the number of LEDs are increased by three times. We found that the temperature between LEDs can be reduced if unit heat flux can be reduced.


2014 ◽  
Vol 28 (25) ◽  
pp. 1450168 ◽  
Author(s):  
Nirup Bandaru ◽  
Ravhi S. Kumar ◽  
Jason Baker ◽  
Oliver Tschauner ◽  
Thomas Hartmann ◽  
...  

Structural behavior of bulk WS 2 under high pressure was investigated using synchrotron X-ray diffraction and diamond anvil cell up to 52 GPa along with high temperature X-ray diffraction and high pressure Raman spectroscopy analysis. The high pressure results obtained from X-ray diffraction and Raman analysis did not show any pressure induced structural phase transformations up to 52 GPa. The high temperature results show that the WS 2 crystal structure is stable upon heating up to 600°C. Furthermore, the powder X-ray diffraction obtained on shock subjected WS 2 to high pressures up to 10 GPa also did not reveal any structural changes. Our results suggest that even though WS 2 is less compressible than the isostructural MoS 2, its crystal structure is stable under static and dynamic compressions up to the experimental limit.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Michael McKee ◽  
Faramarz Gordaninejad

This study reviews the work performed in the field of reciprocating shaft seals from the advent of the scientific topic in the 1940s. Concepts of leakage, film layers, friction, wear, and other concerns with shaft seals are discussed. The importance of shaft seals as it pertains to liquid springs is brought to light along with issues requiring a need for these seals to withstand high temperatures and high pressures. Issues resulting from a seal exposure to high temperatures, such as thermosetting and embrittlement, are discussed in conjunction with materials and properties that allow seals to operate in high-temperature environments. High-pressure sealing challenges are identified along with the techniques currently employed to overcome these issues, such as fiber reinforcement and backup rings. Sealing solutions have been implemented independently for both high-pressure and high-temperature applications; however, the combination of high pressures coupled with high temperatures is still a challenge today.


2018 ◽  
Vol 5 (7) ◽  
pp. 180405 ◽  
Author(s):  
Peng Xu ◽  
Zhengwu Tao ◽  
Zhihong Wang

A series of corrosion problems caused by high-temperature, high-pressure and high-acid gas environments has been an issue in oil and gas production for a long time. During the development of a high-acid gas field, the petroleum pipe is subjected to many aspects of corrosion, and the corrosion mechanism is complicated by the condition of the coexistence of H 2 S/CO 2 . Based on the study of the corrosion problem associated with the formate packer fluid in Southwest China, three kinds of steels were studied for corrosion prevention in the alloy G3/N80 steel/TP110SS steel. The study shows that the corrosion rate of the formate packer fluid is low, but corrosion is severe in environments characterized by high temperatures, high pressures and high-acid gas contents. Based on the consideration of cost and the difficulty of realization, an anti-corrosion system was constructed based on the existing packer fluid, mainly through the introduction of a variety of anti-corrosion additives. Through the selection of various additives and corrosion experiments, a corrosion protection system of formate packer fluid was developed. Corrosion tests show that the corrosion rate of the system must be less than 0.076 mm yr −1 to achieve the purpose of corrosion protection. The formate packer fluid with corrosion protection can meet the needs of the current application.


2017 ◽  
Vol 19 (2) ◽  
pp. 177 ◽  
Author(s):  
S. Tolendiuly ◽  
S. M. Fomenko ◽  
G. C. Dannangoda ◽  
K. S. Martirosyan

<p>Magnesium diboride can be synthesized under argon ambient, elevated or high pressures. High-pressure syntheses are promising methods for manufacturing of the bulk MgB<sub>2</sub> superconductor material. We have been used high pressure of Ar gas in order to investigate its effect on properties of MgB<sub>2</sub> superconductor such as critical temperature and current density. Bulk MgB<sub>2</sub> superconductor was synthesized from elemental Mg–B powders in thermal explosion mode of self-propagating high-temperature synthesis (SHS) under argon pressure of 25 atm. XRD pattern of the as-synthesized product indicates an almost complete conversion of the reactants to the MgB<sub>2</sub> single phase. Most of the diffractions peaks are related to the MgB<sub>2</sub> polycrystalline bulk material. The impurity fraction is less than 24.3% in total sample and identified as MgO and MgB<sub>4</sub> secondary phases. The positive effect of pressure of Ar gas during synthesis of MgB2 on critical current density JC has been confirmed. The critical current density of the sample was achieved in high pressure reactor was 3.8×10<sup>6</sup> A/cm<sup>2</sup>. A superconducting volume fraction of 16% under a magnetic field of 10 Oe was obtained at 5 K, indicating that the superconductivity was bulk in nature. The succeeded level of superconductor parameters of the high-pressure synthesized MgB<sub>2</sub> and the possibility to produce a large bulk products make this technology very promising for practical applications.</p>


2020 ◽  
Vol 85 (2) ◽  
pp. 237-250
Author(s):  
Javid Safarov ◽  
Christoffer Bussemer ◽  
Abilgani Aliyev ◽  
Gorica Ivanis ◽  
Mirjana Kijevcanin ◽  
...  

Densities of ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate [OMIM][PF6] at high temperatures and high pressures were measured. The measurements were made along 10 isotherms over a temperature range T = 278.15 to 413.15 K, at pressures up to 140 MPa by means of an Anton Paar DMA HPM vibration tube densimeter (VTD). The combined expanded relative uncertainties of the density, pressure and temperature measurements at the 95 % confidence level with a coverage factor of k = 2 are estimated to be 0.03 to 0.08 % (depending on temperature and pressure ranges), 0.1 %, and 0.015 K, respectively. We have critically assessed all of the reported high-pressure densities for [OMIM][PF6], together with the presented results, in order to carefully select primary data for development of a reference wide-ranging equation of state. Values of ??T isobars curvatures, (?2?/?T2)?, were estimated using the present high-pressure ?-T measurements and they were pretty low (0.78?10-7 to 1.50??10-7 m3 kg-1 K-1), indicating that the heat capacity of [OMIM][PF6] very weakly depends on pressure, since (?Cp/?P)T ?(?2?/?T2)?. Density data were fitted to the modified Tammann?Tait equation and the multiparametric polynomial-type equation of state (EOS) for the IL was developed using the measured high-pressure and high-temperature (p, ?, T) data. This EOS, together with our previous measured heat capacity data at atmospheric pressure, was used to calculate high-pressure and high-temperature derived thermodynamic properties, such as isothermal compressibility,isentropic compressibility, isobaric thermal expansion coefficient, heat capacities,etc.


Sign in / Sign up

Export Citation Format

Share Document