GaAs/Ge Crystal Growth on Si and SiO2/Si Substrates

1986 ◽  
Vol 67 ◽  
Author(s):  
Yoshiro Ohmachi ◽  
Yukinobu Shinoda ◽  
Satoshi Oku

ABSTRACTAn approach to the composite layer growth of GaAs/Ge on Si(100) and insulator–coated Si(100) has been investigated. To overcome a problem of antiphase disorder of GaAs occurring along with epitaxial growth on Ge, thermal etching on Ge surfaces in hydrogen was introduced just prior to the growth. Antiphase–domain–free GaAs grown on a Ge(100) wafer exhibited mirror surfaces, photoluminescence characteristics comparable to those of homoepitaxial layers, and low etch–pit densities. The autodoping of Ge into GaAs induced a highly doped interfacial layer several thousand angstroms thick. The present study also involves heteroepitaxial growth of Ge on Si by vacuum deposition and Ge crystal growth on insulating layers over Si by LESS method.

1985 ◽  
Vol 56 ◽  
Author(s):  
Y. Shinoda ◽  
Y. Ohmachi

AbstractHigh-quality single domain GaAs epitaxial layers were successfully grown on (100)Ge substrates. Growth was carried out using conventional metalorganic chemical vapor deposition at atmospheric pressure. Antiphase domain free GaAs epitaxial layers were obtained by thermal etching of the Ge surface just prior to growth. Mosaic surface morphology and antiphase boundaries characteristic of domain structures were completely absent in epi-layers following thermal etching. Photoluminescence revealed that domain free epi-layers exhibited characteristics comparable to those of GaAs homoepitaxial layers.


Author(s):  
I. Grzegory ◽  
M. Bockowski ◽  
B. Lucznik ◽  
S. Krukowski ◽  
M. Wroblewski ◽  
...  

We present recent results on bulk GaN crystallization. The best quality GaN crystals grown from the solution at high N2 pressure without an intentional seeding are single crystalline platelets of stable morphology reaching dimensions up to 10 mm. The fastest growth direction for such crystals is [1 0 0], perpendicular to the GaN c-axis. The maximum stable growth rate perpendicular to crystal c-axis is determined from the experiment and used for an estimate of the effective supersaturation for the {10 0} face assuming two dimensional layer growth. The heat of GaN disssolution, determined from experimental solubility data, is used for the estimation of the edge energy of 2-D nuclei on the growing {10 0} face. Bulk crystal growth seeded by a single hexagonal needle with well developed {10 0} faces is also reported. The crystallization mechanisms and morphological stability in seeded growth of GaN are discussed on the basis of experimental results. The physical properties of the GaN crystals and homoepitaxial layers grown on them are briefly reviewed.


1986 ◽  
Vol 67 ◽  
Author(s):  
Masahiro Akiyama ◽  
Yoshihiro Kawarada ◽  
Seiji Nishi ◽  
Takashi Ueda ◽  
Katsuzo Kaminishi

In recent years, the heteroepitaxial growth of GaAs layers on Si substrates has been gained an increasing interest [1 - 14]. GaAs is one of the most important III-V materials and has been well studied and used for optical and electrical devices. On the other hand, with Si we have large size wafers of superior quality and sophisticated technologies and Si is a main material for semiconductor industries. Therefore, GaAs/Si system has possibilities for realizing new types of functional devices or ICs with GaAs and Si devices. This system, however, has two serious problems. One is the large lattice mismatch of about 4 % between these materials and the other is the polar on nonpolar problem i.e., the formation of an antiphase domain disorder. It was reported that when (211)-oriented Si substrates were used, there was no problem of the formation of an antiphase domain structure 5. For growing materials on lattice mismatched substrates, it was reported that the thin layers deposited at low temperatures were effective to relax the lattice mismatches for the systems such as SiC on Si[15] and Si on saphire [16]. In GaAs/Si system, the Ge buffer layer has been used to relax the lattice mismatch[17 - 22] It was also reported that the composite strained layer superlattice with GaP/GaAsP and GaAsP/GaAs was very effective as a buffer layer[23 - 25].


1999 ◽  
Vol 567 ◽  
Author(s):  
Renee Nieh ◽  
Wen-Jie Qi ◽  
Yongjoo Jeon ◽  
Byoung Hun Lee ◽  
Aaron Lucas ◽  
...  

ABSTRACTBa0.5Sr0.5TiO3 (BST) is one of the high-k candidates for replacing SiO2 as the gate dielectric in future generation devices. The biggest obstacle to scaling the equivalent oxide thickness (EOT) of BST is an interfacial layer, SixOy, which forms between BST and Si. Nitrogen (N2) implantation into the Si substrate has been proposed to reduce the growth of this interfacial layer. In this study, capacitors (Pt/BST/Si) were fabricated by depositing thin BST films (50Å) onto N2 implanted Si in order to evaluate the effects of implant dose and annealing conditions on EOT. It was found that N2 implantation reduced the EOT of RF magnetron sputtered and Metal Oxide Chemical Vapor Deposition (MOCVD) BST films by ∼20% and ∼33%, respectively. For sputtered BST, an implant dose of 1×1014cm−;2 provided sufficient nitrogen concentration without residual implant damage after annealing. X-ray photoelectron spectroscopy data confirmed that the reduction in EOT is due to a reduction in the interfacial layer growth. X-ray diffraction spectra revealed typical polycrystalline structure with (111) and (200) preferential orientations for both films. Leakage for these 50Å BST films is on the order of 10−8 to 10−5 A/cm2—lower than oxynitrides with comparable EOTs.


2008 ◽  
Vol 600-603 ◽  
pp. 251-254 ◽  
Author(s):  
Yong Mei Zhao ◽  
Guo Sheng Sun ◽  
Xing Fang Liu ◽  
Jia Ye Li ◽  
Wan Shun Zhao ◽  
...  

Using AlN as a buffer layer, 3C-SiC film has been grown on Si substrate by low pressure chemical vapor deposition (LPCVD). Firstly growth of AlN thin films on Si substrates under varied V/III ratios at 1100oC was investigated and the (002) preferred orientational growth with good crystallinity was obtained at the V/III ratio of 10000. Annealing at 1300oC indicated the surface morphology and crystallinity stability of AlN film. Secondly the 3C-SiC film was grown on Si substrate with AlN buffer layer. Compared to that without AlN buffer layer, the crystal quality of the 3C-SiC film was improved on the AlN/Si substrate, characterized by X-ray diffraction (XRD) and Raman measurements.


2015 ◽  
Vol 1790 ◽  
pp. 13-18
Author(s):  
Shun Sasaki ◽  
Shailesh Madisetti ◽  
Vadim Tokranov ◽  
Michael Yakimov ◽  
Makoto Hirayama ◽  
...  

ABSTRACTGroup III-Sb compound semiconductors are promising materials for future CMOS circuits. Especially, In1-xGaxSb is considered as a complimentary p-type channel material to n-type In1-xGaxAs MOSFET due to the superior hole transport properties and similar chemical properties in III-Sb’s to those of InGaAs. The heteroepitaxial growth of In1-xGaxSb on Si substrate has significant advantage for volume fabrication of III-V ICs. However large lattice mismatch between InGaSb and Si results in many growth-related defects (micro twins, threading dislocations and antiphase domain boundaries); these defects also act as deep acceptor levels. Accordingly, unintentional doping in InGaSb films causes additional scattering, increase junction leakages and affects the interface properties. In this paper, we studied the correlations between of defects and hole carrier densities in GaSb and strained In1-xGaxSb quantum well layers by using various designs of metamorphic superlattice buffers.


1991 ◽  
Vol 220 ◽  
Author(s):  
J. B. Posthill ◽  
D. P. Malta ◽  
R. Venkatasubramanian ◽  
P. R. Sharps ◽  
M. L. Timmons ◽  
...  

ABSTRACTInvestigation has continued into the use of SixGe1−x multilayer structures (MLS) as a buffer layer between a Si substrate and a GaAs epitaxial layer in order to accommodate the 4.1% lattice mismatch. SixGe1−x 4-layer and 5-layer structures terminating in pure Ge have been grown using molecular beam epitaxy. Subsequent GaAs heteroepitaxy has allowed evaluation of these various GaAs/SixGe1−xMLS/Si (100) structures. Antiphase domain boundaries have been eliminated using vicinal Si (100) substrates tilted 6° off-axis toward [011], and the etch pit density in GaAs grown on a 5-layer SixGe1−x MLS on vicinal Si (lOO) was measured to be 106 cm−2.


2014 ◽  
Vol 778-780 ◽  
pp. 230-233
Author(s):  
Yukimune Watanabe ◽  
Tsuyoshi Horikawa ◽  
Kiichi Kamimura

The carbonized layer for a buffer layer strongly influences the crystalline quality of the 3C-SiC epitaxial films on the Si substrates. The growth mechanism of the carbonized layer strongly depended on the process conditions. The surface of silicon substrate was carbonized under the pressure of 7.8 × 10-3 Pa or 7.8 × 10-2 Pa in this research. Under the relatively low pressure of 7.8 × 10-3 Pa, the carbonized layer was grown by the epitaxial mechanism. The crystal axis of the carbonized layer grown under this pressure was confirmed to coincide with the crystal axis of the Si substrate from the results of the selected area electron diffraction (SAED) analysis. Under the relatively high pressure condition of 7.8 × 10-2 Pa, the carbonized layer was grown by the diffusion mechanism. The result of the SAED pattern and the XTEM image indicated that this layer consisted of small grainy crystals and their crystal axes inclined against the growth direction. It was confirmed that the crystalline quality of the SiC film deposited on the carbonized layer grown by the epitaxial mechanism is better than that deposited on the layer grown by the diffusion mechanism.


1988 ◽  
Vol 53 (22) ◽  
pp. 2179-2181 ◽  
Author(s):  
G. L. Zhou ◽  
K. M. Chen ◽  
W. D. Jiang ◽  
C. Sheng ◽  
X. J. Zhang ◽  
...  

2021 ◽  
Vol 104 (4) ◽  
pp. 129-135
Author(s):  
Takashi Onaya ◽  
Toshihide Nabatame ◽  
Mari Inoue ◽  
Tomomi Sawada ◽  
Hiroyuki Ota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document