Growth and Characterization of Magnetic Nanostructures on Carbon Nanotube Templates

2001 ◽  
Vol 676 ◽  
Author(s):  
Yihong Wu ◽  
Peiwen Qiao ◽  
Towchong Chong

ABSTRATWe describe the growth of magnetic nanostructures on carbon nanotube templates. The nanotubes were grown by microwave plasma enhanced chemical vapour deposition. The as grown nanotubes were aligned reasonably well around the substrate normal directions. Although the nanotubes were quite straight, there were still some bent and tilt as revealed by the scanning electron microscope observations. Magnetic field has been used to re-align or re-assemble the nanotubes before they were used as the templates to grow magnetic nanostructures. Depending on whether there is a magnetic particle on the top tip of each nanotube and the density of the nanotubes, there are two different consequences of applying a magnetic field to the nanotubes. For nanotubes with magnetic particles attached to their top tips, the post-growth treatment by the magnetic field resulted in re-assembly of the nanotubes into micro-umbrella type of structures. For those without magnetic particles, however, the effect of magnetic field treatment is negligible; but after the deposition of thin magnetic layers, the field treatment made the nanotubes much straighter than what they originally were and aligned almost vertically to the substrates. The re-aligned or re-assembled nanotubes were used as the templates to grow magnetic nanostructures. It was found that most of the magnetic nanostructures exhibited characteristics similar to those of magnetic nanowires.

1992 ◽  
Vol 258 ◽  
Author(s):  
F.S. Pool ◽  
J.M. Essick ◽  
Y.H. Shing ◽  
R.T. Mather

ABSTRACTThe magnetic field profile of an electron cyclotron resonance (ECR) microwave plasma was systematically altered to determine subsequent effects on a-Si:H film quality. Films of a-Si:H were deposited at pressures of 0.7 mTorr and 5 mTorr with a H2/SiH4 ratio of approximately three. The mobility gap density of states ND, deposition rate and light to dark conductivity were determined for the a-Si:H films. This data was correlated to the magnetic field profile of the plasma, which was characterized by Langmuir probe measurements of the ion current density. By variation of the magnetic field profile ND could be altered by more than an order of magnitude, from 1×1016 to 1×1017 at 0.7 mTorr and 1×1016 to 5×1017 at 5 mTorr. Two deposition regimes were found to occur for the conditions of this study. Highly divergent magnetic fields resulted in poor quality a-Si:H, while for magnetic field profiles defining a more highly confined plasma, the a-Si:H was of device quality and relatively independent of the magnetic field configuration.


Author(s):  
Chuncheng Yang ◽  
Zhong Liu ◽  
Xiangyu Pei ◽  
Cuiling Jin ◽  
Mengchun Yu ◽  
...  

Magnetorheological fluids (MRFs) based on amorphous Fe-Si-B alloy magnetic particles were prepared. The influence of annealing treatment on stability and rheological property of MRFs was investigated. The saturation magnetization ( Ms) of amorphous Fe-Si-B particles after annealing at 550°C is 131.5 emu/g, which is higher than that of amorphous Fe-Si-B particles without annealing. Moreover, the stability of MRF with annealed amorphous Fe-Si-B particles is better than that of MRF without annealed amorphous Fe-Si-B particles. Stearic acid at 3 wt% was added to the MRF2 to enhance the fluid stability to greater than 90%. In addition, the rheological properties demonstrate that the prepared amorphous particle MRF shows relatively strong magnetic responsiveness, especially when the magnetic field strength reaches 365 kA/m. As the magnetic field intensified, the yield stress increased dramatically and followed the Herschel-Bulkley model.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
G. Tosolini ◽  
J. M. Michalik ◽  
R. Córdoba ◽  
J. M. de Teresa ◽  
F. Pérez-Murano ◽  
...  

AbstractWe present the magnetic characterization of cobalt wires grown by focused electron beam-induced deposition (FEBID) and studied using static piezoresistive cantilever magnetometry. We have used previously developed high force sensitive submicron-thick silicon piezoresistive cantilevers. High quality polycrystalline cobalt microwires have been grown by FEBID onto the free end of the cantilevers using dual beam equipment. In the presence of an external magnetic field, the magnetic cobalt wires become magnetized, which leads to the magnetic field dependent static deflection of the cantilevers. We show that the piezoresistive signal from the cantilevers, corresponding to a maximum force of about 1 nN, can be measured as a function of the applied magnetic field with a good signal to noise ratio at room temperature. The results highlight the flexibility of the FEBID technique for the growth of magnetic structures on specific substrates, in this case piezoresistive cantilevers.


2018 ◽  
Vol 939 ◽  
pp. 147-152 ◽  
Author(s):  
Anil K. Bastola ◽  
Milan Paudel ◽  
Lin Li

This article delineates the characterization of the 3D printed MR elastomer through a forced vibration technique in the squeeze mode of operation. An anisotropic hybrid magnetorheological (MR) elastomer is developed via 3D printing. The 3D printed MR elastomer consists of three different materials; magnetic particles, magnetic particles carrier fluid, and an elastomer. MR fluid filaments are encapsulated layer-by-layer within the elastomer matrix using a 3D printer. When a moderately strong magnetic field is applied, the 3D printed MR elastomer changes its elastic and damping properties. The hybrid 3D printed MR elastomer also shows an anisotropic behavior when the direction of the magnetic field is changed with respect to the orientation of the printed filaments. The relative MR effect is higher when the applied magnetic field is parallel to the orientation of the printed filaments. The maximum change in the stiffness is observed to be 65.2% when a magnetic field of 500 mT is applied to the MR elastomer system. This result shows that the new method, 3D printing could produce anisotropic hybrid MR elastomers or possibly other types.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
C. R. S. V. Boas ◽  
B. Focassio ◽  
E. Marinho ◽  
D. G. Larrude ◽  
M. C . Salvadori ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2012 ◽  
Vol 503 ◽  
pp. 3-7
Author(s):  
Meng Zhao ◽  
Ji Bin Zou ◽  
Jing Shang

According to researching the spin traveling wave pump, the relationship of the characteristics of magnetic fluid and the press is investigated under the spin magnetic field by the theory method. The relationship of moving, magnetic field and press is investigated by the decoupled computation between the magnetic field and force. The method is scientificity and rationality by the testing. The distributing shape of magnetic fluid in the pump is affected by the adding magnetic field under the spin magnetic field when the magnetic fluid is filled in the pump. At the same time, the adding magnetic field is affected by magnetic particles of magnetic fluid. The magnetic fluid can be moved by the effect of the adding magnetic field in the pump. The flux of magnetic fluid increases with the magnetic field.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
E. Chiaramello ◽  
S. Fiocchi ◽  
P. Ravazzani ◽  
M. Parazzini

This study focused on the evaluation of the exposure of children aging from five to fourteen years to 50 Hz homogenous magnetic field uncertain orientation using stochastic dosimetry. Surrogate models allowed assessing how the variation of the orientation of the magnetic field influenced the induced electric field in each tissue of the central nervous system (CNS) and in the peripheral nervous system (PNS) of children. Results showed that the electric field induced in CNS and PNS tissues of children were within the ICNIRP basic restrictions for general public and that no significant difference was found in the level of exposure of children of different ages when considering 10000 possible orientations of the magnetic field. A “mean stochastic model,” useful to estimate the level of exposure in each tissue of a representative child in the range of age from five to fourteen years, was developed. In conclusion, this study was useful to deepen knowledge about the ELF-MF exposure, including the evaluation of variable and uncertain conditions, thus representing a step towards a more realistic characterization of the exposure to EMF.


2004 ◽  
Vol 820 ◽  
Author(s):  
Ramazan Asmatulu ◽  
Richard.O. Claus ◽  
Judy S. Riffle ◽  
Michael Zalich

AbstractBiodegradable magnetic nanoparticles were synthesized using Poly(L-Lactic Acid) and magnetite nanoparticles (∼14 nm) at different dosages, and then these nanaoparticles (nanocomposites) and pure magnetic particles were targeted in external magnetic fields by changing the test parameters. The magnetic field test results showed that magnetic saturation, fluid speed, magnetic field distance and particle size were extremely effective for a magnetic guidance system that is needed for an effective drug delivery approach. Thus, it is assumed that such nanoparticles can carry drugs (chemotherapy) to be able to cure cancer tumors as well as many other diseases.


Sign in / Sign up

Export Citation Format

Share Document