Effective Hydrogen Separation Using Ion Beam Modified Polymeric Membranes

2002 ◽  
Vol 756 ◽  
Author(s):  
M. R. Coleman ◽  
X. Xu ◽  
J. Ilconich ◽  
J. Ritchie ◽  
L. Hu

ABSTRACTHigh purity H2 gas streams are increasingly important for a variety of applications including feed gases for fuel cells. The potential of hydrogen gas as primary energy source has generated considerable interest in hydrogen separation technologies. We have been investigating ion beam irradiation as a method to modify polymeric membranes to enhance both hydrogen permeability and permselectivities. Combined high permeabilities and permselectivities are required to give high recoveries of high purity hydrogen. Ion irradiation typically results in the formation of numerous crosslinks within the polymer matrix that should enable these materials to maintain selectivities at high temperatures and to resist chemical attack. Helium separations over a range of temperatures of irradiated polyimides were used as a model of the hydrogen system. Finally, the impact of irradiation conditions on gas separations in these materials will be addressed.

2011 ◽  
Vol 695 ◽  
pp. 255-258
Author(s):  
Kyeong Il Kim ◽  
Sung Woong Yoo ◽  
Na Ri Lee ◽  
Tae Whan Hong

The most promising methods for high purity hydrogen production are membranes separation such as polymer, metal, ceramic and composites. It is well known that Pd and Pd-alloys membranes have excellent properties for hydrogen separation. However, it has hydrogen embrittlement and high cost for practical applications. Therefore, most scientists have studied new materials instead of Pd and Pd-alloys. On the other hand, ceramic materials are great in resistance to acids and chemically stable under high operating temperature. Recent research in cermet materials for membrane applications interests to permeability and selectivity of hydrogen. High purity hydrogen can be produced through simple process by membrane. Recently, research in ceramic composites for membrane applications attract to hydrogen separation. Porous ceramic membrane process which has high permeability and hydrogen flux is chemically and thermally stable. Therefore, they are attractive for applications in hydrogen production process. However, porous ceramic membrane had low selectivity, hard to produce high purity hydrogen. Many studies were carried out Pd and Pd alloys coating, they were fabricated dense cermet membrane. In this work, ACZ ceramic membrane was fabricated disk type membrane by cold isostatic press (CIP) and then coated Pd and Pd-alloys.. It was characterized by XRD, SEM, EDX and BET. Also, we estimated the hydrogen permeability by Sievert's type hydrogen permeation membrane equipment.


2018 ◽  
Vol 165 ◽  
pp. 02010 ◽  
Author(s):  
Simon Puydebois ◽  
Abdelali Oudriss ◽  
Pierre Bernard ◽  
Laurent Briottet ◽  
Xavier Feaugas

For several years, Inconel 718 made by Laser Beam Melting (LBM) has been used for components of the Ariane propulsion systems manufactured by ArianeGroup. In the aerospace field, many components of space engines are used under hydrogen environment. The risk of hydrogen embrittlement (HE) can be therefore a first order problem. Consequently, to improve the HE sensitivity of LBM Inconel 718, a systematic approach needs to be developed to characterize the microstructure at different scales and its interaction with hydrogen. This study addresses the impact of gaseous hydrogen on the material mechanical behavior under fatigue loadings. In a first step, the low cycle fatigue behavior under 300 bar of hydrogen gas has been evaluated with specimen loaded at a constant load ratio of R=0.1 and a frequency of 0.5 Hz. A reduction in the cycle number of fracture is shown. This reduction of fatigue life is a consequence of the impact of hydrogen damage processes. The impact of hydrogen is evaluated at the stages of crack initiation, crack propagation. These results are discussed in relation with the hydrogen embrittlement mechanisms and particularly in terms of hydrogen / plasticity interactions. To achieve this, the fracture surface morphology was first examined using scanning electron microscopy and second samples near the fracture surface were extracted using Focused-Ion Beam machining from regions containing striation. The main result observed is a reduction of the size of dislocation organization in relation with a decrease of the striation distance.


2002 ◽  
Vol 752 ◽  
Author(s):  
Xinglong Xu ◽  
Ling Hu ◽  
J. Ilconich

ABSTACTThis study focused on the impact of virgin polymer structure and microstructure on the transport properties of irradiated polyimide. Two fluorine containing polyimide isomers (6FDA-6FpDA and 6FDA-6FmDA) that differ solely in the location of the linkage between the diamine and dianhydride residues were used for this study. While these polymers differ in the location of a single bond, the virgin transport properties are dramatically different. The para connected isomer (6FDA-6FpDA) has much higher permeabilities and lower selectivities than the meta connect isomer (6FDA-6FmDA). The pure gas permeabilities in polyimide-ceramic composite membranes following H+ ion irradiation over a wide range of doses will be compared for these polyimide isomers. In addition, the evolution in chemical structure was monitored using Fourier transform infrared spectroscopy (FTIR). These polymers exhibited different decay rate in chemical structure following ion irradiation. Interestingly, the evolution in gas transport properties of these polymers following H+ ion irradiation was also quite different. We will discuss how the microstructure would affect the gas permeation properties of ion beam modification of polymer.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (10) ◽  
pp. 745-749 ◽  
Author(s):  
John D. Perry ◽  
Kazukiyo Nagai ◽  
William J. Koros

AbstractThe development of a hydrogen-based economy would generate a substantial necessity for efficient means of collecting hydrogen with a relatively high purity. Membrane separations play a major role in the separation of hydrogen gas from various gas mixtures, and this article discusses the use of polymeric materials to produce these membranes. After a review of the historical use of polymeric membranes and some background information regarding mechanisms of gas transport in membranes, this article will review the work that has been done in the two major classes of hydrogen separation membranes: hydrogen-selective membranes and hydrogen-rejective membranes. In hydrogen-selective membranes, the very small size of the hydrogen molecule is exploited to allow rapid diffusion of hydrogen through the membrane while excluding other gases. Hydrogen-rejective membranes use the significantly higher sorption of other gases to overcome the advantages of the small size of the hydrogen molecule. The discussion of these two types of membranes will be followed by a presentation of the current state of the art with regard to polymeric membranes for hydrogen separation and a discussion of the predictions for future applications and advancements in this area.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


Author(s):  
Becky Holdford

Abstract On mechanically polished cross-sections, getting a surface adequate for high-resolution imaging is sometimes beyond the analyst’s ability, due to material smearing, chipping, polishing media chemical attack, etc.. A method has been developed to enable the focused ion beam (FIB) to re-face the section block and achieve a surface that can be imaged at high resolution in the scanning electron microscope (SEM).


Author(s):  
Paul Stevens

This chapter is concerned with the role of oil and gas in the economic development of the global economy. It focuses on the context in which established and newer oil and gas producers in developing countries must frame their policies to optimize the benefits of such resources. It outlines a history of the issue over the last twenty-five years. It considers oil and gas as factor inputs, their role in global trade, the role of oil prices in the macroeconomy and the impact of the geopolitics of oil and gas. It then considers various conventional views of the future of oil and gas in the primary energy mix. Finally, it challenges the drivers behind these conventional views of the future with an emphasis on why they may prove to be different from what is expected and how this may change the context in which producers must frame their policy responses.


RSC Advances ◽  
2021 ◽  
Vol 11 (42) ◽  
pp. 26218-26227
Author(s):  
R. Panda ◽  
S. A. Khan ◽  
U. P. Singh ◽  
R. Naik ◽  
N. C. Mishra

Swift heavy ion (SHI) irradiation in thin films significantly modifies the structure and related properties in a controlled manner.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Roman Sherrod ◽  
Eric C. O’Quinn ◽  
Igor M. Gussev ◽  
Cale Overstreet ◽  
Joerg Neuefeind ◽  
...  

AbstractThe structural response of Dy2TiO5 oxide under swift heavy ion irradiation (2.2 GeV Au ions) was studied over a range of structural length scales utilizing neutron total scattering experiments. Refinement of diffraction data confirms that the long-range orthorhombic structure is susceptible to ion beam-induced amorphization with limited crystalline fraction remaining after irradiation to 8 × 1012 ions/cm2. In contrast, the local atomic arrangement, examined through pair distribution function analysis, shows only subtle changes after irradiation and is still described best by the original orthorhombic structural model. A comparison to Dy2Ti2O7 pyrochlore oxide under the same irradiation conditions reveals a different behavior: while the dysprosium titanate pyrochlore is more radiation resistant over the long-range with smaller degree of amorphization as compared to Dy2TiO5, the former involves more local atomic rearrangements, best described by a pyrochlore-to-weberite-type transformation. These results highlight the importance of short-range and medium-range order analysis for a comprehensive description of radiation behavior.


ACS Nano ◽  
2021 ◽  
Author(s):  
Minho Choi ◽  
Seongmoon Jun ◽  
Kie Young Woo ◽  
Hyun Gyu Song ◽  
Hwan-Seop Yeo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document