Investigations of the effect of (Cr1−x, Alx)N coatings’ micro Structure on Impact Toughness

2004 ◽  
Vol 843 ◽  
Author(s):  
K. Bobzin ◽  
E. Lugscheider ◽  
O. Knotek ◽  
M. Maes

ABSTRACTOriginated from the tooling industry, PVD (Physical Vapor Deposition) coating development focused on increasing the wear resistance. Nowadays, a steadily increasing market is evolving by coating machine parts. The requirements that have to be met due to the needs of this new market segment focus on tribological behavior. This means, that the focus of wear resistance is shifted towards properties like coefficient of friction, wetting behavior and the response of coatings towards dynamic loads. For many tribological applications, coatings are exposed to severe alternating loads, which are usually left out in common test methods. The approach of common coating test methods are based on the static behavior of deposited coatings. The impact tester is a testing device with a novel approach to dynamic load behavior of both bulk and coated materials. In this paper, the effect of the coatings' microstructure and Young's modulus on the impact toughness was investigated. A change in microstructure was provoked by changing deposition parameters like aluminum content. In a second stage these coatings were then tested with respect to their response to high alternating loads. For this purpose both load and number of impacts were varied.

Author(s):  
Sijing Fu ◽  
Binghua Jiang ◽  
Jing Wang ◽  
Hong Cheng

In this paper, near net shape casting technology was used to manufacture Cr12MoV steel die modified using RE-Ti. The samples with different RE(rare earth)-Ti content were fabricated by using the induction furnace. The microstructure of the samples was analyzed by using optical microscope and scanning electron microscope. Electronic universal tensile test machine, pendulum impact tester and rockwell apparatus were utilized to test the mechanical properties of the samples. The results show that after RE-Ti compound modification, the distribution and morphology of carbide are improved, and with the Ti increase, the impact toughness significantly increases, and tensile strength has a slight increase, but hardness is almost unchanged. When Ti content is 0.6%, the impact toughness and tensile strength are 14.9 J/cm2 and 634 MPa, respectively, reaching or approaching to the mechanical properties of the forged Cr12MoV steel.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 45 ◽  
Author(s):  
Erding Wen ◽  
Renbo Song ◽  
Wenming Xiong

The microstructure and wear behavior of a 500 Brinell hardness (HB) grade wear-resistant steel tempered at different temperatures were investigated in this study. The tempering microstructures and wear surface morphologies were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The relationship between mechanical properties and wear resistance was analyzed. The microstructure of the steel mainly consisted of tempered martensite and ferrite. Tempered troosite was obtained when the tempering temperature was over 280 °C. The hardness decreased constantly with the increase of tempering temperature. The same hardness was obtained when tempered at 260 °C and 300 °C, due to the interaction of Fe3C carbides and dislocations. The impact toughness increased first and reached a peak value when tempered at 260 °C. As the tempering temperature was over 260 °C, carbide precipitation would occur along the grain boundaries, which led to temper embrittlement. The best wear resistance was obtained when tempered at 200 °C. At the initiation of the wear test, surface hardness was considered to be the dominant influencing factor on wear resistance. The effect of surface hardness improvement on wear resistance was far greater than the impact toughness. With the wear time extending, the crushed quartz sand particles and the cut-down burs would be new abrasive particles which would cause further wear. Otherwise, the increasing contact temperature would soften the matrix and the adhesive wear turned out to be the dominant wear mechanism, which would result in severe wear.


2008 ◽  
Vol 23 (5) ◽  
pp. 1482-1487 ◽  
Author(s):  
Yuhuan Xu ◽  
Shengquan Ou ◽  
K.N. Tu ◽  
Kejun Zeng ◽  
Rajiv Dunne

The most frequent cause of failure for wireless, handheld, and portable consumer electronic products is an accidental drop to the ground. The impact may cause interfacial fracture of ball-grid-array solder joints. Existing metrology, such as ball shear and ball pull tests, cannot characterize the impact-induced high speed fracture failure. In this study, a mini-impact tester was utilized to measure the impact toughness and to characterize the impact reliability of both eutectic SnPb and SnAgCu solder joints. The annealing effect at 150 °C on the impact toughness was investigated, and the fractured surfaces were examined. The impact toughness of SnAgCu solder joints with the plating of electroless Ni/immersion Au (ENIG) became worse after annealing, decreasing from 10 or 11 mJ to 7 mJ. On the other hand, an improvement of the impact toughness of eutectic SnPb solder joints with ENIG was recorded after annealing, increasing from 6 or 10 to 15 mJ. Annealing has softened the bulk SnPb solder so that more plastic deformation can occur to absorb the impact energy.


2017 ◽  
Vol 24 (Supp02) ◽  
pp. 1850028
Author(s):  
BINFENG LU ◽  
YUNXIA CHEN ◽  
MENGJIA XU

(Cr, Fe)7C3/[Formula: see text]-Fe composite layer has been in situ synthesized on a low carbon steel surface by vacuum electron beam VEB irradiation. The synthesized samples were then subdued to different heat treatments to improve their impaired impact toughness. The microstructure, impact toughness and wear resistance of the heat-treated samples were studied by means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), microhardness tester, impact test machine and tribological tester. After heat treatment, the primary and eutectic carbides remained in their original shape and size, and a large number of secondary carbides precipitated in the iron matrix. Since the Widmanstatten ferrite in the heat affected zone (HAZ) transformed to fine ferrite completely, the impact toughness of the heat-treated samples increased significantly. The microhardness of the heat-treated samples decreased slightly due to the decreased chromium content in the iron matrix. The wear resistance of 1000[Formula: see text]C and 900[Formula: see text]C heat-treated samples was almost same with the as-synthesized sample. While the wear resistance of the 800[Formula: see text]C heat-treated one decreased slightly because part of the austenite matrix had transformed to ferrite matrix, which reduced the bonding of carbides particulates.


2012 ◽  
Vol 6 (1) ◽  
pp. 14-21 ◽  
Author(s):  
J. C. Caicedo ◽  
G. Cabrera ◽  
H. H. Caicedo ◽  
W. Aperador

Corrosive-erosive effect on AISI D3 steel, 304 stainless steel and CrN/AlN coating in aqueous NaCl slurries was studied. CrN/AlN multilayer films with a thickness of 3 µm and bilayer period of Λ = 60 nm (50 bilayers) were obtained by using the physical vapor deposition (PVD) technique (magnetron sputtering). The corrosion-erosion experiments were performed in a test machine in which the impingement velocity, impact angle, concentration of solids and pH of the solution were controlled. Polarization curves were simultaneously obtained to correlate the electrochemical effects to the erosive wear mechanisms. The slurry used consists of silica particles suspended in a mixture of acid solution and 3.5% NaCl, with a pH value of 5.6. Electrochemical results showed the best corrosion resistance for 304 stainless steels. Additionally, the surface analysis by SEM micrograph revealed formation of cracks in CrN/AlN multilayers coating and plastic deformation in both steel substrates (AISI D3 steel, 304 stainless steel), especially when the mean impact angle is a critical value of 90°. Measurements of critical and passive current densities showed that the behavior of coated materials differed depending on the substrate that is used. Nonetheless, in a general way, by increasing the impact angle and by changing its incidence from normal to grazing, it led to a resistance to corrosion-erosion processes.


2021 ◽  
Vol 11 (21) ◽  
pp. 10236
Author(s):  
Lingfeng Xu ◽  
Zhanhua Song ◽  
Mingxiang Li ◽  
Fade Li ◽  
Jing Guo ◽  
...  

The working environment of agricultural cutting tools is poor, and the operational quality and efficiency are reduced after they become blunt. This study aimed to develop a high wear-resistant agriculture knife with a long life. A Ni–WC alloy, wear-resistant layer was prepared using laser cladding technology on one side of the cutting edge of a 65 Mn silage knife. A self-grinding edge was formed when the cladded knife was used, which improved the cutting quality and service life of the knife. The microstructure, phase, composition, and hardness distribution of the cladding layer were detected and analyzed. The impact toughness and wear resistance of the laser-cladded samples were analyzed, and the cladded knife was tested in the field. The results show that a cladded layer with a dense microstructure formed metallurgical bonds with the substrate. The microhardness was uniform across the cladded layer, and the average hardness of the micro Vickers was approximately 1000 HV(0.2), which was approximately three times the hardness of the substrate. The impact toughness and wear resistance of the coated knife were obviously higher than those of uncoated knives. The field tests showed that compared with a conventional 65 Mn knife, the self-grinding knife with laser cladding could maintain its sharp cutting shape after operation for 76 h, which greatly extended the service life of the knife. This study improved the service life of an agricultural cutting tool, which enhanced the cutting performance and efficiency at the same time.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 371
Author(s):  
Taixu Xu ◽  
Chongyi Wei ◽  
Xiao Han ◽  
Jihui Liu ◽  
Zhijun He ◽  
...  

This study evaluated the effect of an increase in carbon content and the presence of the elements Mo and V on the microstructure and properties of the surfacing layer of stainless steel powder for knives and scissors production. Various types of high-quality stainless steel powder (5Cr13, 8Cr13, and 8Cr13MoV) were deposited on the surface of low-grade stainless steel used to produce knives and scissors (2Cr13). The microstructure, comprehensive hardness, wear resistance, impact toughness, and corrosion resistance of the stainless steel powder surfacing layers were tested and analyzed. Results indicate that the increase in carbon content and the presence of Mo and V improve the comprehensive hardness and wear resistance of the stainless steel powder surfacing layer, and both exert the superposition effect. However, the increase in carbon content and the presence of Mo and V slightly influence the impact toughness of the surfacing layer. In addition, the increase in carbon content significantly reduces the corrosion resistance of the surfacing layer. This adverse effect is reduced when Mo and V exist. Other advantages of the presence of Mo and V in the stainless steel powder surfacing layer include the refinement of grain size, reduction of carbide particle size, and improvement of the metallurgical bonding of the surfacing layer and the matrix.


2007 ◽  
Vol 336-338 ◽  
pp. 2605-2608 ◽  
Author(s):  
Yan Pei Song ◽  
Xie Min Mao ◽  
Qi Ming Dong ◽  
Liu Ding Tang ◽  
Zhi Ying Ouyang ◽  
...  

Two kinds of thick-walled rings, consisted of WCP/Fe-C gradient composites layers containing about 54 and 70 vol.% of WCP and Fe-C alloy core, were cast by centrifugal casting method. The microstructure, mechanical properties and wear resistance of the gradient composites were investigated. Meanwhile the results were compared with those made of the high speed steel. It was found that WCP in the two kind of gradient composites layers were even well distributed, WCP/Fe-C composites layer of 23-28mm was obtained, the transition layer between the composites layer and matrix alloy core was perfect. The tensile strengths of the two gradient composites layers achieved 345MPa, 460MPa and the impact toughness were 4.6J/cm2, 6.2J/cm2 respectively. Moreover the hardness of the composites layers attained HRA81 and HRA 78. The result of the comparison among the gradient composites layers and that made of the high speed steel showed that the wear resistance of the gradient composites layers containing about 50 and 70 vol.% of WCP was more than 20 times higher than that of the high speed steel under loads of 100N and 200N and sliding velocity of 60 m/s. Finally, the wear-mechanism was discussed.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 795
Author(s):  
Samar Reda Al-Sayed ◽  
Ahmed Magdi Elshazli ◽  
Abdel Hamid Ahmed Hussein

Laser surface treatment on two different types of nickel–chromium white cast iron (Ni-hard) alloys (Ni-hard 1 and Ni-hard 4) was investigated. Nd:YAG laser of 2.2-kw with continuous wave was used. Ni-hard alloys are promising engineering materials, which are extensively used in applications where good resistance to abrasion wear is essential. The conventional hardening of such alloys leads to high wear resistance nevertheless, the core of the alloy suffers from low toughness. Therefore, it would be beneficial to harden the surface via laser surface technology which keeps the core tough enough to resist high impact shocks. A laser power of different levels (600, 800 and 1000 Watts) corresponding to three different laser scanning speeds (3, 4 and 5 m·min−1) was adopted hoping to reach optimum conditions for wear resistance and impact toughness. The optimum condition for both properties was recorded at heat input of 16.78 J·mm−2. The present findings reflect that the microhardness values and wear resistance clearly increased after laser hardening by almost three times due to laser surface hardening, whereas, the impact toughness was increased from five joules obtained from conventionally heat-treated samples to 6.4 J as gained from laser-treated samples.


Sign in / Sign up

Export Citation Format

Share Document