scholarly journals Elucidation of the biosynthetic pathway of B-group vitamins via genome mining of food-derived \(\textit{Bacillus velezensis}\) VTX20

2021 ◽  
Vol 43 (4) ◽  
pp. 153-159
Author(s):  
Quach Ngoc Tung ◽  
Vu Thi Hanh Nguyen ◽  
Le Thi Thanh Xuan ◽  
Chu Hoang Ha ◽  
Phi Quyet Tien

B-vitamins are micronutrients that play an important role in various cellular processes of organisms, which are only synthesized by plants, yeasts, and bacteria. Since animals and humans lack the ability to synthesize B-vitamins, supplements of vitamins from dietary and the B-vitamin producing bacteria are required. In this study, we, for the first time, shed some light on biosynthetic pathways involved in folate (vitamin B9), riboflavin (vitamin B2), and biotin (vitamin B7) production in Bacillus velezensis VTX20. The genome-wide comparison revealed that B. velezensis VTX20 shared high similarities with B. tequilensis KCTC 13622, B. subtilis 168, B. amyloliquefaciens DSM 7. Genomic analysis revealed the presence of a complete folate biosynthesis pathway in which some core components were not found in most Bacillus species. Moreover, strain VTX20 also had the metabolic pathways for riboflavin and biotin that are important probiotic traits. These results highlighted that B. velezensis VTX20 is a producer of B-vitamins, which can be applied further in the agricultural biotechnology industry.

2021 ◽  
Vol 11 (15) ◽  
pp. 7055
Author(s):  
Thi Hanh Nguyen Vu ◽  
Ngoc Tung Quach ◽  
Ngoc Anh Nguyen ◽  
Huyen Trang Nguyen ◽  
Cao Cuong Ngo ◽  
...  

Exopolysaccharides (EPSs) produced by Bacillus species have recently emerged as promising commercial antioxidants in various industries, such as pharmaceutics and biomedicine. However, little is known about EPS production and function from Bacillus velezensis so far. In the present study, the effect of sugar sources on EPS production by B. velezensis VTX20 and the genetic biosynthesis, characteristics, and antioxidant activity of the resulting EPS were evaluated. The strain VTX20 produced the maximum EPS yield of 75.5 ± 4.8 g/L from an initial 200 g/L of sucrose after a 48-h cultivation. Through genomic analysis, ls-levB operon was found, for the first time, to be responsible for the levan-type EPS production in B. velezensis. Biochemical and structural characterization further confirmed the majority of levan, followed by an extremely low level of dextran biopolymer. The water solubility index and water holding capacity of the EPSs were 81.9 ± 3.4% and 100.2 ± 3.4%, respectively. In vitro antioxidant activity analyses showed strong scavenging activity for 1,1-diphenyl-2-picrylhydrazyl and hydroxyl radical values of 40.1–64.0% and 16.0–40%, respectively. These findings shed light on the EPS biosynthesis of B. velezensis at both structural and genetic levels and the potential application of EPS as a natural antioxidant for pharmaceutical and biomedical industries.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1046 ◽  
Author(s):  
Muhammad Rabbee ◽  
Md. Ali ◽  
Jinhee Choi ◽  
Buyng Hwang ◽  
Sang Jeong ◽  
...  

Bacillus velezensis is an aerobic, gram-positive, endospore-forming bacterium that promotes plant growth. Numerous strains of this species have been reported to suppress the growth of microbial pathogens, including bacteria, fungi, and nematodes. Based on recent phylogenetic analysis, several Bacillus species have been reclassified as B. velezensis. However, this information has yet to be integrated into a well-organized resource. Genomic analysis has revealed that B. velezensis possesses strain-specific clusters of genes related to the biosynthesis of secondary metabolites, which play significant roles in both pathogen suppression and plant growth promotion. More specifically, B. velezensis exhibits a high genetic capacity for synthesizing cyclic lipopeptides (i.e., surfactin, bacillomycin-D, fengycin, and bacillibactin) and polyketides (i.e., macrolactin, bacillaene, and difficidin). Secondary metabolites produced by B. velezensis can also trigger induced systemic resistance in plants, a process by which plants defend themselves against recurrent attacks by virulent microorganisms. This is the first study to integrate previously published information about the Bacillus species, newly reclassified as B. velezensis, and their beneficial metabolites (i.e., siderophore, bacteriocins, and volatile organic compounds).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Zhang ◽  
Kyle Brown ◽  
Yucong Yu ◽  
Ziad Ibrahim ◽  
Mohamad Zandian ◽  
...  

AbstractThe transcriptional co-activator and acetyltransferase p300 is required for fundamental cellular processes, including differentiation and growth. Here, we report that p300 forms phase separated condensates in the cell nucleus. The phase separation ability of p300 is regulated by autoacetylation and relies on its catalytic core components, including the histone acetyltransferase (HAT) domain, the autoinhibition loop, and bromodomain. p300 condensates sequester chromatin components, such as histone H3 tail and DNA, and are amplified through binding of p300 to the nucleosome. The catalytic HAT activity of p300 is decreased due to occlusion of the active site in the phase separated droplets, a large portion of which co-localizes with chromatin regions enriched in H3K27me3. Our findings suggest a model in which p300 condensates can act as a storage pool of the protein with reduced HAT activity, allowing p300 to be compartmentalized and concentrated at poised or repressed chromatin regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zefang Sun ◽  
Jia Tan ◽  
Minqiong Zhao ◽  
Qiyao Peng ◽  
Mingqing Zhou ◽  
...  

AbstracttRNAs and tRNA-derived RNA fragments (tRFs) play various roles in many cellular processes outside of protein synthesis. However, comprehensive investigations of tRNA/tRF regulation are rare. In this study, we used new algorithms to extensively analyze the publicly available data from 1332 ChIP-Seq and 42 small-RNA-Seq experiments in human cell lines and tissues to investigate the transcriptional and posttranscriptional regulatory mechanisms of tRNAs. We found that histone acetylation, cAMP, and pluripotency pathways play important roles in the regulation of the tRNA gene transcription in a cell-specific manner. Analysis of RNA-Seq data identified 950 high-confidence tRFs, and the results suggested that tRNA pools are dramatically distinct across the samples in terms of expression profiles and tRF composition. The mismatch analysis identified new potential modification sites and specific modification patterns in tRNA families. The results also show that RNA library preparation technologies have a considerable impact on tRNA profiling and need to be optimized in the future.


2018 ◽  
Vol 29 (19) ◽  
pp. 2280-2291 ◽  
Author(s):  
Michele Haltiner Jones ◽  
Eileen T. O’Toole ◽  
Amy S. Fabritius ◽  
Eric G. Muller ◽  
Janet B. Meehl ◽  
...  

Phosphorylation modulates many cellular processes during cell cycle progression. The yeast centrosome (called the spindle pole body, SPB) is regulated by the protein kinases Mps1 and Cdc28/Cdk1 as it nucleates microtubules to separate chromosomes during mitosis. Previously we completed an SPB phosphoproteome, identifying 297 sites on 17 of the 18 SPB components. Here we describe mutagenic analysis of phosphorylation events on Spc29 and Spc42, two SPB core components that were shown in the phosphoproteome to be heavily phosphorylated. Mutagenesis at multiple sites in Spc29 and Spc42 suggests that much of the phosphorylation on these two proteins is not essential but enhances several steps of mitosis. Of the 65 sites examined on both proteins, phosphorylation of the Mps1 sites Spc29-T18 and Spc29-T240 was shown to be critical for function. Interestingly, these two sites primarily influence distinct successive steps; Spc29-T240 is important for the interaction of Spc29 with Spc42, likely during satellite formation, and Spc29-T18 facilitates insertion of the new SPB into the nuclear envelope and promotes anaphase spindle elongation. Phosphorylation sites within Cdk1 motifs affect function to varying degrees, but mutations only have significant effects in the presence of an MPS1 mutation, supporting a theme of coregulation by these two kinases.


2020 ◽  
Vol 19 ◽  
pp. 153303382092096
Author(s):  
Hongzhi Sun ◽  
Bo Zhang ◽  
Haijun Li

Pancreatic ductal adenocarcinoma has extremely high malignancy and patients with pancreatic ductal adenocarcinoma have dismal prognosis. The failure of pancreatic ductal adenocarcinoma treatment is largely due to the tumor microenvironment, which is featured by ample stromal cells and complicated extracellular matrix. Recent genomic analysis revealed that pancreatic ductal adenocarcinoma harbors frequently mutated genes including KRAS, TP53, CDKN2A, and SMAD4, which can widely alter cellular processes and behaviors. As shown by accumulating studies, these mutant genes may also change tumor microenvironment, which in turn affects pancreatic ductal adenocarcinoma progression. In this review, we summarize the role of such genetic mutations in tumor microenvironment regulation and potential mechanisms.


Author(s):  
Thomas Perli ◽  
Dewi P.I. Moonen ◽  
Marcel van den Broek ◽  
Jack T. Pronk ◽  
Jean-Marc Daran

AbstractQuantitative physiological studies on Saccharomyces cerevisiae commonly use synthetic media (SM) that contain a set of water-soluble growth factors that, based on their roles in human nutrition, are referred to as B-vitamins. Previous work demonstrated that, in S. cerevisiae CEN.PK113-7D, requirements for biotin could be eliminated by laboratory evolution. In the present study, this laboratory strain was shown to exhibit suboptimal specific growth rates when either inositol, nicotinic acid, pyridoxine, pantothenic acid, para-aminobenzoic acid (pABA) or thiamine were omitted from SM. Subsequently, this strain was evolved in parallel serial-transfer experiments for fast aerobic growth on glucose in the absence of individual B-vitamins. In all evolution lines, specific growth rates reached at least 90 % of the growth rate observed in SM supplemented with a complete B-vitamin mixture. Fast growth was already observed after a few transfers on SM without myo-inositol, nicotinic acid or pABA. Reaching similar results in SM lacking thiamine, pyridoxine or pantothenate required over 300 generations of selective growth. The genomes of evolved single-colony isolates were re-sequenced and, for each B-vitamin, a subset of non-synonymous mutations associated with fast vitamin-independent growth were selected. These mutations were introduced in a non-evolved reference strain using CRISPR/Cas9-based genome editing. For each B-vitamin, introduction of a small number of mutations sufficed to achieve substantially a increased specific growth rate in non-supplemented SM that represented at least 87% of the specific growth rate observed in fully supplemented complete SM.ImportanceMany strains of Saccharomyces cerevisiae, a popular platform organism in industrial biotechnology, carry the genetic information required for synthesis of biotin, thiamine, pyridoxine, para-aminobenzoic acid, pantothenic acid, nicotinic acid and inositol. However, omission of these B-vitamins typically leads to suboptimal growth. This study demonstrates that, for each individual B-vitamin, it is possible to achieve fast vitamin-independent growth by adaptive laboratory evolution (ALE). Identification of mutations responsible for these fast-growing phenotype by whole-genome sequencing and reverse engineering showed that, for each compound, a small number of mutations sufficed to achieve fast growth in its absence. These results form an important first step towards development of S. cerevisiae strains that exhibit fast growth on cheap, fully mineral media that only require complementation with a carbon source, thereby reducing costs, complexity and contamination risks in industrial yeast fermentation processes.


2012 ◽  
Vol 25 (1) ◽  
pp. 180-192 ◽  
Author(s):  
E. R. Ellsworth-Bowers ◽  
E. J. Corwin

Postpartum depression (PPD) is a relatively common and often severe mood disorder that develops in women after childbirth. The aetiology of PPD is unclear, although there is emerging evidence to suggest a psychoneuroimmune connection. Additionally, deficiencies in n-3 PUFA, B vitamins, vitamin D and trace minerals have been implicated. This paper reviews evidence for a link between micronutrient status and PPD, analysing the potential contribution of each micronutrient to psychoneuroimmunological mechanisms of PPD. Articles related to PPD and women's levels of n-3 PUFA, B vitamins, vitamin D and the trace minerals Zn and Se were reviewed. Findings suggest that while n-3 PUFA levels have been shown to vary inversely with PPD and link with psychoneuroimmunology, there is mixed evidence regarding the ability of n-3 PUFA to prevent or treat PPD. B vitamin status is not clearly linked to PPD, even though it seems to vary inversely with depression in non-perinatal populations and may have an impact on immunity. Vitamin D and the trace minerals Zn and Se are linked to PPD and psychoneuroimmunology by intriguing, but small, studies. Overall, evidence suggests that certain micronutrient deficiencies contribute to the development of PPD, possibly through psychoneuroimmunological mechanisms. Developing a better understanding of these mechanisms is important for guiding future research, clinical practice and health education regarding PPD.


2020 ◽  
Vol 17 (10) ◽  
pp. 2807-2823
Author(s):  
Vanessa Joglar ◽  
Antero Prieto ◽  
Esther Barber-Lluch ◽  
Marta Hernández-Ruiz ◽  
Emilio Fernández ◽  
...  

Abstract. We experimentally evaluated the temporal (interday and interseason) and spatial variability in microbial plankton responses to vitamin B12 and/or B1 supply (solely or in combination with inorganic nutrients) in coastal and oceanic waters of the northeast Atlantic Ocean. Phytoplankton and, to a lesser extent, prokaryotes were strongly limited by inorganic nutrients. Interday variability in microbial plankton responses to B vitamins was limited compared to interseason variability, suggesting that B-vitamin availability might be partially controlled by factors operating at seasonal scale. Chlorophyll a (Chl a) concentration and prokaryote biomass (PB) significantly increased after B-vitamin amendments in 13 % and 21 %, respectively, of the 216 cases (36 experiments × 6 treatments). Most of these positive responses were produced by treatments containing either B12 solely or B12 combined with B1 in oceanic waters, which was consistent with the significantly lower average vitamin-B12 ambient concentrations compared to that in the coastal station. Negative responses, implying a decrease in Chl a or PB, represented 21 % for phytoplankton and 26 % for prokaryotes. Growth stimulation by B1 addition was more frequent on prokaryotes than in phytoplankton, suggesting that B1 auxotrophy in the sampling area could be more widespread in prokaryotes than in phytoplankton. Negative responses to B vitamins were generalized in coastal surface waters in summer and were associated with a high contribution of Flavobacteriales to the prokaryote community. This observation suggests that the external supply of B12 and/or B1 may promote negative interactions between microbial components when B-vitamin auxotrophs are abundant. The microbial response patterns to B12 and/or B1 amendments were significantly correlated with changes in the prokaryotic community composition, highlighting the pivotal role of prokaryotes in B-vitamin cycling in marine ecosystems.


Sign in / Sign up

Export Citation Format

Share Document