Electrochemical Behavior of Titanium in Artificial Saliva: Influence of pH

2014 ◽  
Vol 40 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Savithri Abey ◽  
Mathew T. Mathew ◽  
Damian J. Lee ◽  
Kent L. Knoernschild ◽  
Markus A. Wimmer ◽  
...  

Titanium is the most common material chosen for dental implants because it is highly corrosion resistant because it constantly reforms a protective passive film layer. The formation and composition of the passive film layer is dependent on the environmental conditions. If the stable oxide layer is damaged, the titanium surface underneath can corrode. The purpose of this study was to determine if basic corrosion of commercially pure titanium (CpTi) alloy in artificial saliva was affected by pH and to understand the corrosion kinetics/mechanisms of CpTi as a function of pH. In this study, titanium alloy discs were subjected to corrosion tests. Before the tests, all samples were cleaned and polished using standard metallographic preparation methods. Artificial saliva was used as the testing medium. The following pH values were tested: 3.0, 4.5, 6.0, 6.5, 7.5, and 9.0. Different pH values were achieved by adding lactic acid (acidic) or NaOH (basic) in appropriate amounts. Potentiodynamic curves indicated behavior change at each pH. In addition, the corrosion current density value determined from the potentiodynamic curve exhibited the poorest corrosion resistance for pH 7.5. The Nyquist plot (from the electrochemical impedance spectroscopy results) indicated that pH 7.5 had the poorest resistance. Scanning electron microscopy images indicated that pH levels of 6.5, 7.5, and 9.0 had considerable surface corrosion. The results showed that the media's pH significantly influenced the corrosion behavior of CpTi. The poor corrosion behavior at the neutral pHs invites some concerns and highlights the need for further study.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ming Liu ◽  
Jun Li ◽  
Danping Li ◽  
Lierui Zheng

Purpose At present, carbonated drinks such as cola are especially favored by the younger generation. But because of its acid, it often leads to tooth demineralization, resulting in “cola tooth”. However, the influence of cola on the corrosion resistance of passive film of TiA10 alloy restorative materials is rarely reported. The purpose of this study was to analysis the corrosion resistance, composition of the passive film of TA10 alloy in different concentrations of Cola. Design/methodology/approach The passive behavior of TA10 alloy in artificial saliva (AS) and Cola was studied by means of potentiodynamic polarization, electrochemical impedance spectroscopy, cyclic voltammetry, Mott-Schottky techniques and combined with X-ray photoelectron spectroscopy and Auger electron spectroscopy (AES) surface analysis. Findings With the increase of cola content, the self-corrosion current density of the alloy increases sharply, and the corrosion resistance of the passive film is the best in AS, while Rp in cola is reduced to half of that in AS. The thickness of the passive film in AS, AS +cola and cola is about 9.5 nm, 7.5 nm and 6 nm, respectively. The passive film in cola has more defects and the carrier density is 1.55 times as high as that in AS. Cola can weaken the formation process of the protected oxide, promote the formation of high valence Ti-oxides and increase the content of Mo-oxides in the passive film. Originality/value These results have important guiding significance for the safe use of the alloy in the complex oral environments.


2011 ◽  
Vol 299-300 ◽  
pp. 427-431
Author(s):  
Yun Li ◽  
Shi Zhi Shang ◽  
Ming Cheng ◽  
Liang Xu ◽  
Shi Hong Zhang

The corrosion behavior of Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy in 3.5% NaCl solution was investigated by using potentiodynamic polarization experiments and electrochemical impedance spectroscopy (EIS). The results show that Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy has the better corrosion resistance than its corresponding crystal alloy. During the bath in the 3.5% NaCl solution at 25°C, Zr53.5Cu26.5Ni5Al12Ag3 alloy has the lower corrosion current density than the corresponding crystal alloy. After 100h, the corrosion current densities of Zr53.5Cu26.5Ni5Al12Ag3 and the corresponding crystal alloy are 3.8415×10-8A/cm2 and 5.2827×10-7A/cm2, respectively. The results of EIS test indicate that Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy has the excellent corrosion resistance because passive film with stable structure formed on the surface in 3.5% NaCl solution. With an increase in the immersion time, the passive film becomes thicker. It leads to impedance resistance and corrosion resistance decrease. The surface of Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy in 3.5% NaCl solution for 100h was analyzed by SEM and EDS. The results show that the corrosive pitting can be found at both the amorphous alloy and the corresponding crystal alloy. However, the amorphous alloy has the better corrosive pitting resistance than the crystal one because the corrosion products formed by selective dissolving of Zr and Al elements. Moreover, the addition of Ag element helps to improve the corrosion resistance of the amorphous alloy greatly.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4121 ◽  
Author(s):  
Dmitry V. Mashtalyar ◽  
Konstantine V. Nadaraia ◽  
Andrey S. Gnedenkov ◽  
Igor M. Imshinetskiy ◽  
Mariia A. Piatkova ◽  
...  

Bioactive coatings on VT1-0 commercially pure titanium were formed by the plasma electrolytic oxidation (PEO). A study of the morphological features of coatings was carried out using scanning electron microscopy. A composition of formed coatings was investigated using energy-dispersive spectroscopy and X-ray diffractometry analysis. It was shown that PEO-coatings have calcium phosphate in their composition, which increases the bioactivity of the surface layer. Electrochemical properties of the samples were studied by potentiondynamic polarization and electrochemical impedance spectroscopy in different physiological media: simulated body fluid and minimum essential medium. The data of electrochemical studies indicate more than 15 times decrease in the corrosion current density for the sample with coating (5.0 × 10−9 A/cm2) as compared to the bare titanium (7.7 × 10−8 A/cm2). The formed PEO-layers have elastoplastic properties close to human bone (12–30 GPa) and a lower friction coefficient in comparison with bare metal. The wettability of PEO-layers increased. The contact angle for formed coatings reduced by more than 60° in comparison with bare metal (from 73° for titanium to 8° for PEO-coating). Such an increase in surface hydrophilicity contributes to the greater biocompatibility of the formed coating in comparison with commercially pure titanium. PEO can be prospective as a method for improving titanium surface bioactivity.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 401
Author(s):  
Ruzil Farrakhov ◽  
Olga Melnichuk ◽  
Evgeny Parfenov ◽  
Veta Mukaeva ◽  
Arseniy Raab ◽  
...  

The paper compares the coatings produced by plasma electrolytic oxidation (PEO) on commercially pure titanium and a novel superelastic alloy Ti-18Zr-15Nb (at. %) for implant applications. The PEO coatings were produced on both alloys in the identical pulsed bipolar regime. The properties of the coatings were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The PEO process kinetics was modeled based on the Avrami theorem and Cottrell equation using a relaxation method. The resultant coatings contain TiO2, for both alloys, and NbO2, Nb2O5, ZrO2 for Ti-18Zr-15Nb alloy. The coating on the Ti-18Zr-15Nb alloy has a higher thickness, porosity, and roughness compared to that on cp-Ti. The values of the kinetic coefficients of the PEO process—higher diffusion coefficient and lower time constant for the processing of Ti-18Zr-15Nb—explain this effect. According to the electrochemical studies, PEO coatings on Ti-18Zr-15Nb alloy provide better corrosion protection. Higher corrosion resistance, porosity, and roughness contribute to better biocompatibility of the PEO coating on Ti-18Zr-15Nb alloy compared to cp-Ti.


2021 ◽  
Vol 63 (6) ◽  
pp. 505-511
Author(s):  
Songkran Vongsilathai ◽  
Anchaleeporn Waritswat Lothongkum ◽  
Gobboon Lothongkum

Abstract A new duplex 25Cr-3Ni-7Mn-0.66 N alloy was prepared in a vacuum arc re-melting furnace and characterized by metallographic and EPMA methods. Its corrosion behavior was investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and a Mott-Schottky (M-S) analysis in artificial seawater at room temperature and compared with those of super and normal commercial duplex stainless steel (SDSS and DSS). No significant difference in the open circuit potentials and pitting potentials was observed. Its passive film current density lies between those of SDSS and DSS. This was confirmed by EIS analysis. A pit attack was observed on the δ-phase for all duplex samples, because the PREN16 of the δ-phase was lower than that of the γ-phase. From the Mott-Schottky analysis, the passive films were found to be composed of bi-layer structures, a p-type semiconductor inner layer, and a n-type semiconductor outer layer. The degree of defect as well as the effect of nitrogen in passive film layer are discussed with respect to the point defect model.


10.30544/384 ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Hamid Reza Asgari Bidhendi ◽  
Majid Pouranvari

Titanium alloys and stainless steel 316L are still the most widely used biomaterials for implants despite emerging new materials for this application. There is still someambiguity in corrosion behavior of metals in simulated body fluid (SBF). This paper aims at investigating the corrosion behavior of commercially pure titanium (CP-Ti), Ti–6Al–4V and 316LVM stainless steel (316LVM) in SBF (Hank’s solution) at37 ºC using the cyclic polarization test. Corrosion behavior was described in terms of breakdown potential, the potential and rate ofcorrosion, localized corrosion resistance, andbreakdown repassivation. The effects of anodizing on CP-Ti samples and the passivation on the 316LVM were studied in detail. It was shown that CP-Ti exhibited superior corrosion properties compared to Ti–6Al–4V and 316LVM.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
A. Torres-Islas ◽  
C. Carachure ◽  
S. Serna ◽  
B. Campillo ◽  
G. Rosas

The corrosion behavior of the Fe40Al60nanostructured intermetallic composition was studied using electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques with an innovative electrochemical cell arrangement. The Fe40Al60(% at) intermetallic composition was obtained by mechanical alloying using elemental powders of Fe (99.99%) and Al (99.99%). All electrochemical testing was carried out in Fe40Al60particles that were in water with different pH values. Temperature and test time were also varied. The experimental data was analyzed as an indicator of the monitoring of the particle corrosion current densityicorr. Different oxide types that were formed at surface particle were found. These oxides promote two types of surface corrosion mechanisms: (i) diffusion and (ii) charge transfer mechanisms, which are a function oficorrbehavior of the solution, pH, temperature, and test time. The intermetallic was characterized before and after each test by transmission electron microscopy. Furthermore, the results show that at the surface particles uniform corrosion takes place. These results confirm that it is possible to sense the nanoparticle corrosion behavior by EIS and LPR conventional electrochemical techniques.


2019 ◽  
Vol 66 (6) ◽  
pp. 819-826
Author(s):  
Khashayar Tabi ◽  
Mansour Farzam ◽  
Davood Zaarei

Purpose Potassium silicate sealer was applied on solvent-cleaned, acid-pickled, dacromet-coated steel to improve its corrosion resistance. The purpose of this paper is to study the corrosion behavior of dacromet-coated steel. Design/methodology/approach Potassium silicate sealer was applied on solvent-cleaned, acid-pickled, dacromet-coated steel to improve its corrosion resistance. Electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and salt spray were carried out. SEM was used to study the morphological appearance of the surface. Findings The EIS behavior indicated that solvent-cleaned dacromet-coated steel sealed with potassium silicate showed that the corrosion current density was 2.664E − 5 A.cm2 which was reduced to 8.752E − 6 A.cm2 and the corrosion rate, which was 2.264E − 2 mm.year−1, was reduced to 7.438E − 3 mm.year−1 in NaCl 3.5 wt.per cent. EIS was used in NaCl 3.5 wt.%, and the Bode plot characteristics showed that the corrosion protection of solvent-cleaned, dacromet-coated steel was enhanced when sealed with potassium silicate. The EDS results of salt-sprayed, solvent-cleaned samples after 10 days indicated that the main corrosion products are composed of SiO2, ZnO and Al2O3. Research limitations/implications The detection of Li element in EDS was not possible because of the device limitation. Originality/value The current paper provides new information about the sealing properties of potassium silicate and its effects on the corrosion resistance of dacromet coating, which is widely used in many industries such as the automobile industry.


CORROSION ◽  
10.5006/3545 ◽  
2020 ◽  
Vol 76 (10) ◽  
pp. 918-929
Author(s):  
Shenghan Zhang ◽  
Chenhao Sun ◽  
Yu Tan

Oxide films were formed on A508-3 steel in simulated pressurized water reactor (PWR) primary water at the temperature of 561 ± 1 K for 168 h with zinc and/or aluminum injection. Corrosion behaviors of oxide films were analyzed by electrochemical polarization, electrochemical impedance spectroscopy, Mott-Schottky plots, photocurrent measurement, scanning electronic microscopy, and x-ray diffraction. The results showed that zinc and aluminum simultaneous injection technology decreased the corrosion current density, increased the impedance value, made the oxide film more compact, and affected the semiconductor properties of the oxide film. The increase in zinc concentration improved the corrosion resistance to some extent. ZnAl2O4 phase, with extremely low solubility and high stability, had been detected in the oxide film; this substance changed the composition of the oxide film and affected the corrosion behavior of A508-3 steel.


Sign in / Sign up

Export Citation Format

Share Document