scholarly journals The Improved Chemical, Mechanical, Rheological, and Pasting Characteristics of Protein-Rich Brown Rice by Parboiling Process Integrated with Nitrogen Fertilization

Author(s):  
Azin NASROLLAH ZADEH ◽  
Azade GHORBANI-HASANSARAEI ◽  
Ebrahim AMIRI ◽  
Fatemeh HABIBI

The effects of nitrogen fertilization (NF, 60-100 kg ha-1) and parboiling operation (soaking temperature (SoT, 50-80°C) and steaming time (StT, 10-15 min)) on the protein content (PC), amylose content (AC), gelatinization temperature (GT), hardness value (HV), peak viscosity (PV), trough viscosity (TV), final viscosity (FV), breakdown (BD), setback (SB) point, peak time (PTi), and pasting temperature (PTe) of brown rice were evaluated. Results showed that the GT, HV, FV, and TV were significantly increased by increasing the NF, SoT, and StT levels. An increase in the SoT and StT levels led to a significant reduction in PC, AC, BD, and TV values. The AC (17.13-16.83%) and PV (1605-1588 cP) values were decreased by increasing the NF level, while the PC (8.78-9.46%) and BD (226.9-247.7 cP) values were increased. Rheological parameters of BD (336.4 cP), FV (3608.5 cP), and SB (1843.5 cP) were notably increased using the combined treatment of 100 kg ha-1 NF and of 80°C SoT. The best triple treatments for the improved GT (5.0 °C), HV (19.37 N), as well as FV (3923 cP), and SB (1949 cP) were 60 kg ha-1 NF+80°C SoT+15 min StT, 100 kg ha-1 NF+80°C SoT+15 min StT, and 100 kg ha-1 NF+80°C SoT+10 min StT, respectively.

2020 ◽  
Vol 13 (1) ◽  
pp. 51-68
Author(s):  
O. F. Akinyele ◽  
A. V. Ikujenlola ◽  
T. O. Omobuwajo

Abstract Pupuru and pupuru analogues are fermented, smoked food products usually produced from cassava or cassava substituted with a varying ratio of breadfruit. This study aims at determining and comparing the functional and pasting characteristics of pupuru and pupuru analogues with a view to expanding the utilization of breadfruit as pupuru analogue. The functional properties (water absorption capacity (%), swelling power (g/g), solubility (%)) and pasting characteristics were determined using standard methods. The results showed that the yield of the products ranged between 24.66 and 29.65%, and it was not affected by the amount of breadfruit substituted. The water absorption capacities of the pupuru and pupuru analogues ranged between 216.0 and 449.0%; this parameter increased with temperature increase. Both swelling power and solubility had a rapid increase from 80 °C to 90 °C. Pasting temperature ranged between 73.15 and 83.66 °C, with peak time between 4.58 and 5.33 min. The final viscosity ranged between 94.08 and 391.83 RVU, and it decreased with increase in breadfruit substitution. The study concluded that adding breadfruit to cassava in pupuru analogue production improved some of the functional and pasting properties of the product.


2019 ◽  
pp. 1-16
Author(s):  
J. Eke-Ejiofor ◽  
C. U. Awajiogak

The effect of processing methods on the physicochemical, functional, anti-nutrient factors and pasting properties of Mucuna sloanei (ukpo), Brachystegia eurycoma (achi) and Daterium microcarpum (ofor) were assessed using standard methods. Flour from these seeds were produced after boiling and soaking at different time intervals.  The moisture and ash contents of the three soup thickeners ranged between 5.58- 8.92% and 1.14-5.59% with sample B1 (achi boiled for 15 min) and C4 (ofor soaked for 48 h) having the lowest while sample B2 (achi boiled for 30 min) and C1 (ofor boiled for 15 min) having the highest. Crude Fat and fibre contents ranged from 2.90-10.95% and 1.30-14.39% with samples C1 and A1 (ukpo boiled for 15 min) as the highest respectively. Crude protein and carbohydrate contents of soup thickeners ranged between 9.19 -21.31% and 45.01-71.38% with samples A3 (ukpo soaked for 24 h) and B4 (achi soaked for 48 h) as the highest. Sugar and starch contents ranged from 2.61-5.04% and from 69.00-74.27% respectively with sample C4 and A4 (ukpo soaked for 48 h) as the lowest and sample A3 and B3 (Achi soaked for 24 h) as the highest. Amylose content increased with boiling and decreased with soaking which was the reverse amylopectin. Functional properties showed bulk density and dispersibility to range between 0.56-0.76 g/ml and 32.50-48-00% with sample B3 (achi soaked for 24 h) as highest in both cases. Solubility and swelling power ranged from 32.56-107.51% and from 4.61-8.72 g/g with sample A2 (ukpo boiled for 30 min) and A1 having the highest respectively. Foam capacity ranged from 2.50-29.50% with sample C2 (ofor soaked for 48 h) having the lowest and sample A1 having the highest, while the least gelation concentration of the three soup thickeners recorded 2.00% for all the treatments. Water absorption capacity ranged between 0.67-10.46 ml/g with B1 having the lowest and sample C2 having the highest. Antinutritional factors showed that phytate recorded 0.01 g/kg for all the treatments, tannin ranged from 2.22-40.71 mg/kg, oxalate between 3.40-7.90mg/100g and saponin between 2.60-9.18% with different treatments affecting the antinutrients. Free fatty acid, peroxide value, saponification and acid values increased with an increase in treatment time while iodine value decreased as processing time increased. Pasting result showed that treatment and time affected pasting properties with the highest values as peak viscosity 16429RVU, trough viscosity 9231RVU, breakdown 7858RVU, final viscosity 19977RVU and set back viscosity 13004RVU respectively. Peak time and pasting temperature ranged between 1.60-6.10 min and between 50.25-76.18°C for the different treatments. This study shows the need for appropriate treatment and time combination for better nutrient availability and detoxification of these seeds as soup thickeners.


2022 ◽  
Vol 8 ◽  
Author(s):  
Shijie Shi ◽  
Enting Wang ◽  
Chengxuan Li ◽  
Mingli Cai ◽  
Bo Cheng ◽  
...  

Taste quality of rice is the key to its value. However, it is greatly affected by rice types and the environment. It is a complex but necessary factor to accurately evaluate the taste quality of various types of rice in different environments. In this study, 7 different types of rice with different taste values were used as materials, and 12 nitrogen fertilizer treatments were applied to obtain 84 different rice taste values. We used protein content, amylose content, and RVA to evaluate changes in the taste value of rice. Rice with high taste value tended to have higher amylose content, peak viscosity, hold viscosity, final viscosity, and breakdown, as well as lower protein content, pasting temperature, and peak time. Protein and amylose contents affected the taste value of rice by affecting the RVA profiles except for setback. For high and low taste-value rice types, protein content could explain 66.8 and 42.9% of the variation in taste value, respectively. In the case of medium taste-value type, protein content was not enough to evaluate the taste quality of rice. Stickiness could explain 59.6% of the variation in taste value. When the protein content of rice was less than 6.61% or greater than 9.34%, it could be used to reflect the taste quality of rice. When the protein content was in between the two, protein content was not enough to reflect the taste quality of rice. Our results suggested that protein content could better reflect the taste quality change for rice, which provided a theoretical and technical basis for the accurate evaluation of the taste value of various types of rice.


2021 ◽  
Vol 11 (7) ◽  
pp. 3151
Author(s):  
Maria Iji Adakole ◽  
Akama Friday Ogori ◽  
Julius Kwagh-Hal Ikya ◽  
Vincent Upev ◽  
Giacomo Sardo ◽  
...  

A fermented millet flour called “Ibyer” traditionally available in Nigeria is increasingly being enhanced with ginger powder, of which its quality characteristics to our best knowledge appears not yet reported. To supplement existing information, therefore, the microbiological (which involved bacteria and fungi counts), pasting (which involved peak viscosity, trough, breakdown, final viscosity, set back, peak time, and pasting temperature), proximate (which involved moisture, ash, crude fat, fiber, protein, as well as carbohydrates), and sensory (which involved appearance, aroma, mouth-feel, consistency, taste, and overall acceptability) properties of fermented millet “ibyer” beverage enhanced with ginger powder were investigated. The major experimental stages included assembly of millet flour and ginger powder, preparation of blend formulation, making of “ibyer” beverage blends, and laboratory analysis. The blend involved fermented millet flour (FMF) decreasing, and ginger powder (GP) increasing, by proportions. Results showed noticeable microbiological, pasting, proximate, and sensory differences between blend samples and control. Compared to control, the blend samples obtained reduced bacterial and fungal counts, with increased peak, trough, final, set back viscosities, peak time, and pasting temperature, as well as moisture, ash, crude fat, crude fiber, and crude protein contents, but yet, with decreased sensory appearance, aroma, mouthfeel, taste, and overall acceptability.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1743 ◽  
Author(s):  
Qinghua Yang ◽  
Weili Zhang ◽  
Jing Li ◽  
Xiangwei Gong ◽  
Baili Feng

Proso and foxtail millets are widely cultivated due to their excellent resistance to biotic and abiotic stresses and high nutritional value. Starch is the most important component of millet kernels. Starches with different amylose contents have different physicochemical properties. In this study, starches in proso (non-waxy and waxy) and foxtail millets (non-waxy and waxy) were isolated and investigated. All the starch granules had regular polygonal round shapes and exhibited typical “Maltese crosses”. These four starches all showed bimodal size distribution. The waxy proso and foxtail millets had higher weight-average molar mass and branching degree and lower average chain length of amylopectin. These four starches all presented A-type crystallinity; however, the relative crystallinity of waxy proso and foxtail millets was higher. The two waxy millets had higher onset temperature, peak temperature, conclusion temperature, and gelatinization enthalpy. However, the two non-waxy millets had higher setback viscosity, peak time, and pasting temperature. The significantly different physicochemical properties of waxy and non-waxy millet starches resulted in their different functional properties.


2021 ◽  
Author(s):  
Ishita Chakraborty ◽  
Indira Govindaraju ◽  
Sintu Rongpipi ◽  
Krishna Kishore Mahato ◽  
Nirmal Mazumder

AbstractStarchy food items such as rice and potato with high carbohydrate content raise blood sugar. Hence, consuming low glycaemic foods is one tool to keep diabetes under control. In this study, potato and brown rice (Njavara rice) starches were subjected to hydrothermal treatments: heat moisture treatment (HMT) and annealing (ANN) to develop starch-based food products fit for consumption by diabetic patients. The effects of hydrothermal treatments on physicochemical properties and in-vitro enzymatic digestion of starch were determined. It was observed that hydrothermal treatments decreased the swelling power (SP)% and increased the water solubility (WS)% of the native starches. Native potato starch (PSN) showed a high SP of 80.33%, while annealed potato starch (PANN) and heat moisture treated potato starch (PHMT) showed SP reduced to 65.33% and 51.66%, respectively. Similarly, the SP % reduced from 64.33% in native brown rice (BRN) to 44.66% in annealed brown rice (BRANN) and 38.33% in heat moisture treated brown rice (BRHMT). WS % increased from 32.86% in PSN to 36.66% in PANN and 40.66% in PHMT. In BRN, the WS % increased from 14.0% to 14.66% in BRANN and 18.33% in BRHMT. Amylose content increased from 13.23% and 14.56% in PSN and BRN to 16.14% in PANN 17.99% in PHMT, 17.33% in BRANN, and 18.98% in BRHMT. The PSN crystallinity index reduced from 33.49 to 30.50% in PANN and 32.60% in PHMT. At 12 h of enzymatic digestion, it was found that the degree of hydrolysis (DoH) of PHMT (31.66%) and PANN (36.82%) reduced when compared to PSN (41.09%). Similarly, BRHMT exhibited the lowest DoH at 12 h compared to BRANN (29.24%) and BRN (35.48%). This study highlights the importance of hydrothermal treatments on starch in developing low glycaemic index commercial starch-based food products.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 333 ◽  
Author(s):  
Ulin Basilio-Cortés ◽  
Leopoldo González-Cruz ◽  
Gonzalo Velazquez ◽  
Gerardo Teniente-Martínez ◽  
Carlos Gómez-Aldapa ◽  
...  

The effect of dual modification of corn starch, including hydrolysis and succinylation, were evaluated through peak viscosity (PV) analysis, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. This dual modification was shown to increase the reaction efficiency (RE) and degree substitution (DS) compared with starches that were not subjected to acid hydrolysis pretreatment with a 44% and 45% increase respectively. After acid hydrolysis pretreatment, the surface of the corn starch granules exhibited exo-erosion and whitish points due to the accumulation of succinyl groups. The peak viscosity was reduced significantly with the acid hydrolysis pretreatment (between 3 and 3.5-fold decrease), which decreased the pasting temperature and peak time to 20 °C and 100 s respectively. In addition, the dual modification of corn starch altered certain thermal properties, including a reduction in the enthalpy of gelatinization (ΔH) and a higher range of gelatinization (around 6 °C), which may effectively improve industrial applications. Modifications on the FTIR spectra indicated that the dual modification affected the starch crystallinity, while the Raman spectra revealed that the dual modification disrupted the short-range molecular order in the starch. Rearrangement and molecular destabilization of the starch components promoted their granular amphiphilic properties.


2015 ◽  
Vol 42 (2) ◽  
pp. 149 ◽  
Author(s):  
Onoriode Coast ◽  
Richard H. Ellis ◽  
Alistair J. Murdoch ◽  
Cherryl Quiñones ◽  
Krishna S. V. Jagadish

Climate change is increasing night temperature (NT) more than day temperature (DT) in rice-growing areas. Effects of combinations of NT (24−35°C) from microsporogenesis to anthesis at one or more DT (30 or 35°C) at anthesis on rice spikelet fertility, temperature within spikelets, flowering pattern, grain weight per panicle, amylose content and gel consistency were investigated in contrasting rice cultivars under controlled environments. Cultivars differed in spikelet fertility response to high NT, with higher fertility associated with cooler spikelets (P < 0.01). Flowering dynamics were altered by high NT and a novel high temperature tolerance complementary mechanism, shorter flower open duration in cv. N22, was identified. High NT reduced spikelet fertility, grain weight per panicle, amylose content and gel consistency, whereas high DT reduced only gel consistency. Night temperature >27°C was estimated to reduce grain weight. Generally, high NT was more damaging to grain weight and selected grain quality traits than high DT, with little or no interaction between them. The critical tolerance and escape traits identified, i.e. spikelet cooling, relatively high spikelet fertility, earlier start and peak time of anthesis and shorter spikelet anthesis duration can aid plant breeding programs targeting resilience in warmer climates.


Sign in / Sign up

Export Citation Format

Share Document