scholarly journals Methods for the evaluation of antibiotic resistance in Lactobacillus isolated from fermented sausages

2017 ◽  
Vol 47 (8) ◽  
Author(s):  
Hanna Lethycia Wolupeck ◽  
Crisley Aparecida Morete ◽  
Osmar Roberto DallaSanta ◽  
Fernando Bittencourt Luciano ◽  
Humberto Maciel França Madeira ◽  
...  

ABSTRACT: The present study aimed to assess the antibiotic resistance in 54 indigenous Lactobacillus plantarum isolated from artisanal fermented sausages. The confirmation of the strain species was performed by multiplex-PCR assay. Antibiotic resistance was assessed by disk diffusion (DD) and Minimum Inhibitory Concentration (MIC) methods. Of 54 L. plantarum, 44 strains were genotypically confirmed as L. plantarum and 3 as Lactobacillus pentosus. The highest resistance rates were to ampicillin and streptomycin. The highest susceptibility rates were shown to tetracycline, chloramphenicol and penicillin G. None of the strains showed multidrug resistance. Resistance rates by DD and MIC were not different (P>0.05) for ampicillin, chloramphenicol, erythromycin and penicillin G. Future research should assess the genetic mechanisms underlying the phenotypic resistance in Lactobacillus strains to screen the potential probiotic strains for the development of functional meat products.

2021 ◽  
Vol 12 ◽  
Author(s):  
Odysseas Sotirios Stergiou ◽  
Konstantinos Tegopoulos ◽  
Despoina Eugenia Kiousi ◽  
Margaritis Tsifintaris ◽  
Aristotelis C. Papageorgiou ◽  
...  

Lactobacillus is a diverse genus that includes species of industrial and biomedical interest. Lactiplantibacillus pentosus, formerly known as Lactobacillus pentosus, is a recently reclassified species, that contains strains isolated from diverse environmental niches, ranging from fermented products to mammalian gut microbiota. Importantly, several L. pentosus strains present health-promoting properties, such as immunomodulatory and antiproliferative activities, and are regarded as potential probiotic strains. In this study, we present the draft genome sequence of the potential probiotic strain L. pentosus L33, originally isolated from fermented sausages. Comprehensive bioinformatic analysis and whole-genome annotation were performed to highlight the genetic loci involved in host-microbe interactions and the probiotic phenotype. Consequently, we found that this strain codes for bile salt hydrolases, adhesins and moonlighting proteins, and for Class IIb bacteriocin peptides lacking the GxxxG and GxxxG-like motifs, crucial for their inhibitory activity. Its adhesion ability was also validated in vitro, on human cancer cells. Furthermore, L. pentosus L33 contains an exopolysaccharide (EPS) biosynthesis cluster, and it does not carry transferable antibiotic resistance genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and CAZymes analyses showed that L. pentosus L33 possesses biosynthetic pathways for seven amino acids, while it can degrade a wide array of carbohydrates. In parallel, Clusters of Orthologous Groups (COGs) and KEGG profiles of L. pentosus L33 are similar to those of 26 L. pentosus strains, as well as of two well documented L. plantarum probiotic strains. Conclusively, L. pentosus L33 exhibits good probiotic potential, although further studies are needed to elucidate the extent of its biological properties.


2003 ◽  
Vol 66 (6) ◽  
pp. 937-945 ◽  
Author(s):  
FAUSTO GARDINI ◽  
ROSANNA TOFALO ◽  
GIOVANNA SUZZI

The transfer of bacteria that are resistant to antimicrobial agents or resistance genes from animals to humans via the food chain is increasingly a problem. Therefore, it is important to determine the species and the numbers of bacteria involved in this phenomenon. For this purpose, 148 strains of microstaphylococci were isolated from three types of Italian dry fermented sausages. Eight of 148 strains belonged to the genera Kocuria and Micrococcus. The remaining 140 strains belonged to 11 different species of the genus Staphylococcus. The species most frequently isolated was Staphylococcus xylosus, followed by Staphylococcus saprophyticus and Staphylococcus aureus. Antibiotic resistance levels differed among the species and depended on the strain origin. Microstaphylococci were generally susceptible to β-lactams, but 12 strains were resistant to methicillin, 8 were resistant to oxacillin, and 9 were resistant to penicillin G. No resistance was observed for aminoglicosides and cephalosporines. Many strains were resistant to sulfonamide, colistin suphate, tetracyclin, and bacitracin. Two strains of S. aureus, four strains of S. xylosus, and one strain of Staphylococcus sciuri were able to grow in the presence of 8 μg of vancomycin per g, but all strains were susceptible to teicoplanin. Twenty-two microstaphylococci were resistant to at least five of the tested antibiotics. The multiresistant strain S. aureus 899 was unaffected by eight antibiotics, including vancomycin and methicillin, indicating that a more prudent use of antibiotics in animal husbandry and better hygienic conditions during production should be encouraged because they can play a major role in reducing the incidence of such multiresistant microorganisms and the possible spread of the genetic elements of their resistance.


2001 ◽  
Vol 45 (2) ◽  
pp. 627-629 ◽  
Author(s):  
Mohamed Benbachir ◽  
Saida Benredjeb ◽  
Cheick Saadbouh Boye ◽  
Mireille Dosso ◽  
Houria Belabbes ◽  
...  

ABSTRACT Worldwide spread of antibiotic resistance in Streptococcus pneumoniae is a major problem. However, data from West and North African countries are scarce. To study the level of resistance and compare the situations in different cities, a prospective study was conducted in Abidjan (Ivory Coast), Casablanca (Morocco), Dakar (Senegal), and Tunis (Tunisia), from 1996 to 1997. The resistances to eight antibiotics of 375 isolates were studied by E test, and the results were interpreted using the breakpoints recommended by the National Committee for Clinical Laboratory Standards. Overall, 30.4% of the isolates were nonsusceptible to penicillin G (25.6% were intermediate and 4.8% were resistant). Amoxicillin (96.3% were susceptible) and parenteral third-generation cephalosporins (92.7%) were highly active. Resistance to chloramphenicol was detected in 8.6% of the isolates. High levels of resistance were noted for erythromycin (28%), tetracycline (38.3%), and cotrimoxazole (36.4%). Resistance to rifampin was rare (2.1%). There were significant differences in resistance rates between individual countries. Multiple resistance was more frequent in penicillin-nonsusceptible isolates than in penicillin-susceptible isolates. Recommendations for treatment could be generated from these results in each participating country.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 524 ◽  
Author(s):  
Qi Lin ◽  
Honghu Sun ◽  
Kai Yao ◽  
Jiong Cai ◽  
Yao Ren ◽  
...  

The prevalence of Staphylococcus aureus in 2160 bulk ready-to-eat foods from the Sichuan province of China during 2013–2016 was investigated. The antibiotic resistance and the associated genes, as well as biofilm formation capacity of the S. aureus isolates were measured. Furthermore, the relationship between the antibiotic resistance and the resistant genes was discussed. It was found that 54 S. aureus isolates were recovered, and their prevalence in meat products, dairy, fruit and vegetables, and desserts were 31 (2.6%), six (3.0%), nine (2.2%) and eight (2.3%), respectively. Most strains (52/54) were resistant to at least one of the antibiotics, and 21 isolates were identified as multidrug-resistant (MDR) S. aureus. Three isolates were found to be methicillin-resistant S. aureus. Penicillin, erythromycin, clindamycin, tetracycline and inducible clindamycin resistance were determined as the predominant antibiotics, and the isolates with the phenotypic resistance on these five antibiotics were all determined positive for the resistant gene associated. In total, 33 of 54 S. aureus isolates showed biofilm formation capacity, including two strong biofilm producers, one moderate and 30 weak ones. Two S. aureus isolates with strong biofilm formation abilities showed multi-drug resistance, and one moderate biofilm producer was resistant to two categories of antibiotics.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Aghdas Sadeghi ◽  
Vahid Hakimzadeh ◽  
Esmaeil Salehi ◽  
Hasan Rashidi

Decrease in nitrosamine and optimal smell and flavor gives credit to such meat products as fermented sausages for their considerably optimal storage period and better nutritional values. Replacing red meat with fish and using fat replacer and probiotics in such products have played a great role in the production of such a highly functional food. Therefore, the focus of this study is mainly on the production of fermented trout sausages applying lactobacillus Rhamnosus and Plantarum, substituting part of its fat with inulin (2% of the total fat of the formulation) while examining the physicochemical, textural, dietary, and sensory properties and comparing with control sample, too. The effect of the inulin present in formulation, the type of probiotic strains, and life time (30 days) influencing the physicochemical and textural properties and nitrosamine samples were compared in three ten-day periods as independent valuables completely randomized factorial design. Sensory evaluation was also performed at the end of the 30-day maintenance period. Results suggest that samples with inulin content have experienced less moisture loss during storage. Little fat was also observed in probiotic content samples at the end of the storage. The pH value in the probiotic samples, as compared to the control sample, shows more decline. Inulin content samples caused a marked decline in lightness and an increase in redness. Meanwhile, probiotic presence has caused more declines in lightness intensity in samples. Inulin content samples show more hardness as compared to high fat samples and the probiotics present after pH decline to isoelectric point caused an increase in intensity and hardness of protein fibers. Simultaneously, along with an increase in fat, cohesiveness increased. Nitrosamine content in probiotic samples was lower than the one in test sample much as there was an increase seen in all samples. Despite a little more odor being present, sensory analysis was in favour of the test samples. Other samples demonstrated little difference in sensory evaluation.


2014 ◽  
Vol 63 (10) ◽  
pp. 1324-1327 ◽  
Author(s):  
Sarah Shabayek ◽  
Salah Abdalla

Group B streptococcus (GBS) is a commensal bacterium of the human gastrointestinal and genital tracts. It is a leading cause of neonatal sepsis and meningitis, and has also been recognized as an important pathogen in pregnant women and the elderly. We investigated mechanisms of macrolide and tetracycline resistance in GBS colonizing women in Egypt. A total of 100 isolates were screened using standard antibiotic susceptibility tests. A multiplex PCR assay was used to detect macrolide- and tetracycline-resistance determinants. All isolates were uniformly susceptible to penicillin G, ampicillin, cefotaxime, vancomycin and levofloxacin. The resistance rates to erythromycin, clindamycin, azithromycin, tetracycline and chloramphenicol were 17, 14, 16, 98 and 1 %, respectively. Among the erythromycin-resistant isolates, 82.4 % had constitutive macrolide–lincosamide–streptogramin B (cMLSB) resistance, 5.9 % had inducible MLSB (iMLSB) resistance and 11.8 % had M phenotype resistance. Among the cMLSB phenotypes, 64.3 % of isolates harboured the ermB gene and 35.7 % of isolates harboured none of the investigated macrolide-resistance genes. The single strain expressing the iMLSB phenotype possessed the ermA gene. Of the two strains with the M phenotype, only one possessed the mefA/E gene. Conversely, seven macrolide-sensitive strains (MIC <0.03 µg ml−1) were ermB positive and one macrolide-sensitive strain (MIC <0.03 µg ml−1) harboured mefA/E. Tetracycline resistance was predominantly due to tetM, which was detected alone (83.7 %) or in association with tetL (12.2 %), tetK (1 %) or tetO (1 %). One strain carried tetM associated with both tetL and tetK, and another strain carried tetO alone. The tetO strains were positive for the mefA/E gene, and the tetL and tetK carrier strains harboured the ermB gene. Susceptible strains harbouring but not expressing an antibiotic-resistance gene should be regarded as potentially resistant. These results emphasize the need to monitor the epidemiology of GBS antibiotic resistance in Egypt.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 437
Author(s):  
Ilaria Maria Saracino ◽  
Matteo Pavoni ◽  
Angelo Zullo ◽  
Giulia Fiorini ◽  
Tiziana Lazzarotto ◽  
...  

Background and aims: Only a few antimicrobials are effective against H. pylori, and antibiotic resistance is an increasing problem for eradication therapies. In 2017, the World Health Organization categorized clarithromycin resistant H. pylori as a “high-priority” bacterium. Standard antimicrobial susceptibility testing can be used to prescribe appropriate therapies but is currently recommended only after the second therapeutic failure. H. pylori is, in fact, a “fastidious” microorganism; culture methods are time-consuming and technically challenging. The advent of molecular biology techniques has enabled the identification of molecular mechanisms underlying the observed phenotypic resistance to antibiotics in H. pylori. The aim of this literature review is to summarize the results of original articles published in the last ten years, regarding the use of Next Generation Sequencing, in particular of the whole genome, to predict the antibiotic resistance in H. pylori.Methods: a literature research was made on PubMed. The research was focused on II and III generation sequencing of the whole H. pylori genome. Results: Next Generation Sequencing enabled the detection of novel, rare and complex resistance mechanisms. The prediction of resistance to clarithromycin, levofloxacin and amoxicillin is accurate; for other antimicrobials, such as metronidazole, rifabutin and tetracycline, potential genetic determinants of the resistant status need further investigation.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 698
Author(s):  
Sónia Gomes ◽  
Conceição Fernandes ◽  
Sandra Monteiro ◽  
Edna Cabecinha ◽  
Amílcar Teixeira ◽  
...  

The inappropriate use of antibiotics, one of the causes of the high incidence of antimicrobial-resistant bacteria isolated from aquatic ecosystems, represents a risk for aquatic organisms and the welfare of humans. This study aimed to determine the antimicrobial resistance rates among riverine Aeromonas spp., taken as representative of the autochthonous microbiota, to evaluate the level of antibacterial resistance in the Tua River (Douro basin). The prevalence and degree of antibiotic resistance was examined using motile aeromonads as a potential indicator of antimicrobial susceptibility for the aquatic environment. Water samples were collected from the middle sector of the river, which is most impacted area by several anthropogenic pressures. Water samples were plated on an Aeromonas-selective agar, with and without antibiotics. The activity of 19 antibiotics was studied against 30 isolates of Aeromonas spp. using the standard agar dilution susceptibility test. Antibiotic resistance rates were fosfomycin (FOS) 83.33%, nalidixic acid (NA) 60%, cefotaxime (CTX) 40%, gentamicin (CN) 26.67%, tobramycin (TOB) 26.67%, cotrimoxazole (SXT) 26.67%, chloramphenicol (C) 16.67%, and tetracycline (TE) 13.33%. Some of the nalidixic acid-resistant strains were susceptible to fluoroquinolones. Multiple resistance was also observed (83.33%). The environmental ubiquity, the natural susceptibility to antimicrobials and the zoonotic potential of Aeromonas spp. make them optimal candidates for studying antimicrobial resistance (AMR) in aquatic ecosystems. Aquatic environments may provide an ideal setting for the acquisition and dissemination of antibiotic resistance because anthropogenic activities frequently impact them. The potential risk of multi- and pan-resistant bacteria transmission between animals and humans should be considered in a “One Health—One World” concept.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Anna Bläckberg ◽  
Linn Falk ◽  
Karl Oldberg ◽  
Lars Olaison ◽  
Magnus Rasmussen

Abstract Background Corynebacterium species are often dismissed as contaminants in blood cultures, but they can also cause infective endocarditis (IE), which is a severe condition. Antibiotic resistance of corynebacteria is increasing making treatment challenging. Reports on IE caused by Corynebacterium species are scarce and more knowledge is needed. Methods Cases of IE caused by Corynebacterium species were identified through the Swedish Registry of Infective Endocarditis. Isolates were collected for species redetermination by matrix-assisted laser desorption ionization-time of flight and for antibiotic susceptibility testing using Etests. Results Thirty episodes of IE due to Corynebacterium species were identified between 2008 and 2017. The median age of patients was 71 years (interquartile range, 60–76) and 77% were male. Corynebacterium striatum (n = 11) was the most common IE causing pathogen followed by Corynebacterium jeikeium (n = 5). Surgery was performed in 50% and in-hospital mortality rate was 13%. Patients with IE caused by Corynebacterium species were significantly more likely to have prosthetic valve endocarditis (70%), compared with patients with IE due to Staphylococcus aureus or non-beta-hemolytic streptococci (14% and 26%, respectively) (P &lt; .0001). Vancomycin was active towards all Corynebacterium isolates, whereas resistance towards penicillin G was common. Conclusions Corynebacterium species cause IE, where prosthetic valves are mainly affected and surgery is often performed. Corynebacterium striatum is an important causative agent of IE within the genus. Antibiotic resistance of corynebacteria is relatively common but resistance towards vancomycin could not be detected in vitro.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 930
Author(s):  
Delia Gambino ◽  
Sonia Sciortino ◽  
Sergio Migliore ◽  
Lucia Galuppo ◽  
Roberto Puleio ◽  
...  

The presence of Salmonella spp. in marine animals is a consequence of contamination from terrestrial sources (human activities and animals). Bacteria present in marine environments, including Salmonella spp., can be antibiotic resistant or harbor resistance genes. In this study, Salmonella spp. detection was performed on 176 marine animals stranded in the Sicilian coasts (south Italy). Antibiotic susceptibility, by disk diffusion method and MIC determination, and antibiotic resistance genes, by molecular methods (PCR) of the Salmonella spp. strains, were evaluated. We isolated Salmonella spp. in three animals, though no pathological signs were detected. Our results showed a low prevalence of Salmonella spp. (1.7%) and a low incidence of phenotypic resistance in three Salmonella spp. strains isolated. Indeed, of the three strains, only Salmonella subsp. enterica serovar Typhimurium from S. coeruleoalba and M. mobular showed phenotypic resistance: the first to ampicillin, tetracycline, and sulphamethoxazole, while the latter only to sulphamethoxazole. However, all strains harbored resistance genes (blaTEM, blaOXA, tet(A), tet(D), tet(E), sulI, and sulII). Although the low prevalence of Salmonella spp. found in this study does not represent a relevant health issue, our data contribute to the collection of information on the spread of ARGs, elements involved in antibiotic resistance, now considered a zoonosis in a One Health approach.


Sign in / Sign up

Export Citation Format

Share Document