scholarly journals Preparation of metallic cobalt powders by thermolysis of cobalt (II) acetate, oxalate and formate

Author(s):  
Oleg Yu. Kamenshchikov ◽  
◽  
Alexander A. Ketov ◽  
V.S. Korzanov ◽  
Marina P. Krasnovskikh ◽  
...  

The thermal decomposition of cobalt (II) formate, acetate, and oxalate was studied by synchronous thermal analysis. It is established that in all cases the final product is metallic cobalt. Thermogravi- metric analysis combined with differential scanning calorimetry and mass spectroscopy made it possi- ble to establish thermolysis schemes and gaseous products of salt decomposition. The conditions for obtaining powdered metallic cobalt from carboxylic acid salts are determined. It was determined by electron microscopy that the particle size and structure of metal powders depend on the type of initial salt.

Author(s):  
R.G. Frederickson ◽  
R.G. Ulrich ◽  
J.L. Culberson

Metallic cobalt acts as an epileptogenic agent when placed on the brain surface of some experimental animals. The mechanism by which this substance produces abnormal neuronal discharge is unknown. One potentially useful approach to this problem is to study the cellular and extracellular distribution of elemental cobalt in the meninges and adjacent cerebral cortex. Since it is possible to demonstrate the morphological localization and distribution of heavy metals, such as cobalt, by correlative x-ray analysis and electron microscopy (i.e., by AEM), we are using AEM to locate and identify elemental cobalt in phagocytic meningeal cells of young 80-day postnatal opossums following a subdural injection of cobalt particles.


Author(s):  
Afzana Anwer ◽  
S. Eilidh Bedford ◽  
Richard J. Spontak ◽  
Alan H. Windle

Random copolyesters composed of wholly aromatic monomers such as p-oxybenzoate (B) and 2,6-oxynaphthoate (N) are known to exhibit liquid crystalline characteristics at elevated temperatures and over a broad composition range. Previous studies employing techniques such as X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) have conclusively proven that these thermotropic copolymers can possess a significant crystalline fraction, depending on molecular characteristics and processing history, despite the fact that the copolymer chains possess random intramolecular sequencing. Consequently, the nature of the crystalline structure that develops when these materials are processed in their mesophases and subsequently annealed has recently received considerable attention. A model that has been consistent with all experimental observations involves the Non-Periodic Layer (NPL) crystallite, which occurs when identical monomer sequences enter into register between adjacent chains. The objective of this work is to employ electron microscopy to identify and characterize these crystallites.


Author(s):  
B. M. Culbertson ◽  
M. L. Devinev ◽  
E. C. Kao

The service performance of current dental composite materials, such as anterior and posterior restoratives and/or veneer cements, needs to be improved. As part of a comprehensive effort to find ways to improve such materials, we have launched a broad spectrum study of the physicochemical and mechanical properties of photopolymerizable or visible light cured (VLC) dental composites. The commercially available VLC materials being studied are shown in Table 1. A generic or neat resin VLC system is also being characterized by SEM and TEM, to more fully understand formulation variables and their effects on properties.At a recent dental research meeting, we reported on the differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) characterization of the materials in Table 1. It was shown by DSC and DMA that the materials are substantially undercured by commonly used VLC techniques. Post curing in an oral cavity or a dry environment at 37 to 50°C for 7 or more hours substantially enhances the cure of the materials.


Author(s):  
C. J. Buchko ◽  
P. M. Wilson ◽  
Z. Xu ◽  
J. Zhang ◽  
S. Lee ◽  
...  

The synthesis of well-defined organic molecules with unique geometries opens new opportunities for understanding and controlling the organization of condensed matter. Here, we study dendrimers and macrocycles which are synthesized from rigid phenyl-acetylene spacer units, Both units are solubilized by the presence of tertiary butyl groups located at the periphery of the molecule. These hydrocarbon materials form crystalline and liquid crystalline phases which have been studied by differential scanning calorimetry, hot stage optical microscopy, and wide-angle x-ray scattering (WAXS).The precisely defined architecture of these molecules makes it possible to investigate systematic variations in chemical architecture on the nature of microstructural organization. Here we report on the transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high resolution electron microscopy (HREM) studies of crystalline thin films formed by deposition of these materials onto carbon substrates from dilute solution. Electron microscopy is very attractive for gaining structural information on new molecules due to the scarcity of material to grow single crystals suitable for conventional crystallography.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 626
Author(s):  
Siti Hajar Mohamed ◽  
Md. Sohrab Hossain ◽  
Mohamad Haafiz Mohamad Kassim ◽  
Mardiana Idayu Ahmad ◽  
Fatehah Mohd Omar ◽  
...  

There is an interest in the sustainable utilization of waste cotton cloths because of their enormous volume of generation and high cellulose content. Waste cotton cloths generated are disposed of in a landfill, which causes environmental pollution and leads to the waste of useful resources. In the present study, cellulose nanocrystals (CNCs) were isolated from waste cotton cloths collected from a landfill. The waste cotton cloths collected from the landfill were sterilized and cleaned using supercritical CO2 (scCO2) technology. The cellulose was extracted from scCO2-treated waste cotton cloths using alkaline pulping and bleaching processes. Subsequently, the CNCs were isolated using the H2SO4 hydrolysis of cellulose. The isolated CNCs were analyzed to determine the morphological, chemical, thermal, and physical properties with various analytical methods, including attenuated total reflection-Fourier transform-infrared spectroscopy (ATR-FTIR), field-emission scanning electron microscopy (FE-SEM), energy-filtered transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results showed that the isolated CNCs had a needle-like structure with a length and diameter of 10–30 and 2–6 nm, respectively, and an aspect ratio of 5–15, respectively. Additionally, the isolated CNCs had a high crystallinity index with a good thermal stability. The findings of the present study revealed the potential of recycling waste cotton cloths to produce a value-added product.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1426
Author(s):  
Tomáš Remiš ◽  
Petr Bělský ◽  
Tomáš Kovářík ◽  
Jaroslav Kadlec ◽  
Mina Ghafouri Azar ◽  
...  

In this work, advanced polymer nanocomposites comprising of polyvinyl alcohol (PVA) and nanodiamonds (NDs) were developed using a single-step solution-casting method. The properties of the prepared PVA/NDs nanocomposites were investigated using Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was revealed that the tensile strength improved dramatically with increasing ND content in the PVA matrix, suggesting a strong interaction between the NDs and the PVA. SEM, TEM, and SAXS showed that NDs were present in the form of agglomerates with an average size of ~60 nm with primary particles of diameter ~5 nm. These results showed that NDs could act as a good nanofiller for PVA in terms of improving its stability and mechanical properties.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3538
Author(s):  
Anna Pudło ◽  
Szymon Juchniewicz ◽  
Wiesław Kopeć

The aim of the presented research was to obtain reconstituted atelocollagen fibers after extraction from poultry cartilage using the pepsin-acidic method in order to remove telopeptides from the tropocollagen. Firstly, we examined the extraction of collagen from the cartilage extracellular matrix (ECM) after proteoglycans (PG) had been removed by the action of salts, i.e., NaCl or chaotropic MgCl2. Additionally, the effects of the salt type used for PG and hyaluronic acid removal on the properties of self-assembled fibers in solutions at pH 7.4 and freeze-dried matrices were investigated. The basic features of the obtained fibers were characterized, including thermal properties using scanning calorimetry, rheological properties using dynamic oscillatory rheometry, and the structure by scanning electron microscopy. The fibers obtained after PG removal with both analyzed types of salts had similar thermal denaturation characteristics. However, the fibers after PG removal with NaCl, in contrast to those obtained after MgCl2 treatment, showed different rheological properties during gelatinization and smaller diameter size. Moreover, the degree of fibrillogenesis of collagens after NaCl treatment was complete compared to that with MgCl2, which was only partial (70%). The structures of fibers after lyophilization were fundamentally different. The matrices obtained after NaCl pretreatment form regular scaffolds in contrast to the thin, surface structures of the cartilage matrix after proteoglycans removal using MgCl2.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1142
Author(s):  
S. V. Sajadifar ◽  
P. Krooß ◽  
H. Fröck ◽  
B. Milkereit ◽  
O. Kessler ◽  
...  

In the present study, microstructural and mechanical properties of EN AW 7075 following stress-aging were assessed. For this purpose, properties of stress-aged samples were compared with values obtained for conventionally aged counterparts. It is revealed that the strength and hardness of EN AW 7075 can be increased by the presence of external stresses during aging. Precipitation kinetics were found to be accelerated. The effects of conventional and stress-aging on the microstructure were analyzed using synergetic techniques: the differently aged samples were probed by differential scanning calorimetry (DSC) in order to characterize the precipitation processes. DSC was found to be an excellent screening tool for the analysis of precipitation processes during aging of this alloy with and without the presence of external stresses. Furthermore, using electron microscopy it was revealed that an improvement in mechanical properties can be correlated to changes in the morphologies and sizes of precipitates formed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shafiq Ishak ◽  
Soumen Mandal ◽  
Han-Seung Lee ◽  
Jitendra Kumar Singh

AbstractLauric acid (LA) has been recommended as economic, eco-friendly, and commercially viable materials to be used as phase change materials (PCMs). Nevertheless, there is lack of optimized parameters to produce microencapsulated PCMs with good performance. In this study, different amounts of LA have been chosen as core materials while tetraethyl orthosilicate (TEOS) as the precursor solution to form silicon dioxide (SiO2) shell. The pH of precursor solution was kept at 2.5 for all composition of microencapsulated LA. The synthesized microencapsulated LA/SiO2 has been characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The SEM and TEM confirm the microencapsulation of LA with SiO2. Thermogravimetric analysis (TGA) revealed better thermal stability of microencapsulated LA/SiO2 compared to pure LA. PCM with 50% LA i.e. LAPC-6 exhibited the highest encapsulation efficiency (96.50%) and encapsulation ratio (96.15%) through Differential scanning calorimetry (DSC) as well as good thermal reliability even after 30th cycle of heating and cooling process.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


Sign in / Sign up

Export Citation Format

Share Document