scholarly journals Elastoplastic bend of round steel beam. Message 2. Residual stresses

2018 ◽  
Vol 61 (11) ◽  
pp. 884-890
Author(s):  
V. N. Shinkin

The residual stresses in metals can lead to the defects in metals during their forming and to destruction of metal structures during their long-term operation. The resulting residual stresses during metal forming can be of plastic nature, as in the malleable metals, or caused by a slow irreversible creep at the increased temperatures and prolonged action of loads. In the viscoelastic mediums, it can be caused by the viscous parts of deformation that can accumulate when the body is deformed for a long period of time. The residual stresses also have an effect on the metals microstructure and can present inside and around the crystalline grains as the micro-residual stresses, which are called the hidden elastic stresses. Sometimes the residual stresses are called the eigenstresses by an analogy with the eigenfunctions, introduced by the mathematicians to denote the functions that correspond to the certain values (the eigenvalues) of parameters of the differential equation under the given boundary conditions. The concept of the internal stresses was proposed as a general concept for this type of stresses, created by the body itself; the term residual stresses is assigned to the case, when the internal stresses are caused by the irreversible deformation. In addition to the emergence of favorable system of residual stresses in the discs of malleable metals with a pronounced deformation hardening, there will also be a local increase in strength, provided that the Bauschinger’s effect does not negate the achieved advantages. The extreme values of residual stresses of a straight cylindrical steel rod (beam) during bending are studied below.

2020 ◽  
Vol 26 (3) ◽  
pp. 63-90
Author(s):  
S. A. Lychev ◽  
Montaser Fekry

The article investigates the residual stresses arising in a thermoelastic cylinder as a result of layer-by-layer deposition of material on its lateral surface. Residual stresses are defined as the limiting values of internal stresses developing during the technological process. Internal stresses are caused by incompatible deformations that accumulate in the body as a result of joining parts with different temperatures. For the analysis of internal stresses, an analytical solution of the axisymmetric quasi-static problem of thermoelasticity for a layer-by-layer growing cylinder is constructed. It is shown that the distribution of residual stresses dependson the scenario of the surfacing process. In this case, the supply of additional heat to the growing body can significantly reduce the unevenness of the temperature fields and reduce the intensity of residual stresses. The most effective is uneven heating, which can be realized, for example, by the action of an alternating current with a tunable excitation frequency. This is illustrated by the calculations performed using the constructedanalytical solution.


Author(s):  
Mikael Beuthe

Summary Isostasy explains why observed gravity anomalies are generally much weaker than what is expected from topography alone, and why planetary crusts can support high topography without breaking up. On Earth, it is used to subtract from gravity anomalies the contribution of nearly compensated surface topography. On icy moons and dwarf planets, it constrains the compensation depth which is identified with the thickness of the rigid layer above a soft layer or a global subsurface ocean. Classical isostasy, however, is not self-consistent, neglects internal stresses and geoid contributions to topographical support, and yields ambiguous predictions of geoid anomalies. Isostasy should instead be defined either by minimizing deviatoric elastic stresses within the silicate crust or icy shell, or by studying the dynamic response of the body in the long-time limit. In this paper, I implement the first option by formulating Airy isostatic equilibrium as the linear response of an elastic shell to a combination of surface and internal loads. Isostatic ratios are defined in terms of deviatoric Love numbers which quantify deviations with respect to a fluid state. The Love number approach separates the physics of isostasy from the technicalities of elastic-gravitational spherical deformations, and provides flexibility in the choice of the interior structure. Since elastic isostasy is invariant under a global rescaling of the shell shear modulus, it can be defined in the fluid shell limit, which is simpler and reveals the deep connection with the asymptotic state of dynamic isostasy. If the shell is homogeneous, minimum stress isostasy is dual to a variant of elastic isostasy called zero deflection isostasy, which is less physical but simpler to compute. Each isostatic model is combined with general boundary conditions applied at the surface and bottom of the shell, resulting in one-parameter isostatic families. At long wavelength, the thin shell limit is a good approximation, in which case the influence of boundary conditions disappears as all isostatic families members yield the same isostatic ratios. At short wavelength, topography is supported by shallow stresses so that Airy isostasy becomes similar to either pure top loading or pure bottom loading. The isostatic ratios of incompressible bodies with three homogeneous layers are given in analytical form in the text and in complementary software.


Author(s):  
A. G. Korchunov ◽  
E. M. Medvedeva ◽  
E. M. Golubchik

The modern construction industry widely uses reinforced concrete structures, where high-strength prestressing strands are used. Key parameters determining strength and relaxation resistance are a steel microstructure and internal stresses. The aim of the work was a computer research of a stage-by-stage formation of internal stresses during production of prestressing strands of structure 1х7(1+6), 12.5 mm diameter, 1770 MPa strength grade, made of pearlitic steel, as well as study of various modes of mechanical and thermal treatment (MTT) influence on their distribution. To study the effect of every strand manufacturing operation on internal stresses of its wires, the authors developed three models: stranding and reducing a 7-wire strand; straightening of a laid strand, stranding and MTT of a 7-wire strand. It was shown that absolute values of residual stresses and their distribution in a wire used for strands of a specified structure significantly influence performance properties of strands. The use of MTT makes it possible to control in a wide range a redistribution of residual stresses in steel resulting from drawing and strand laying processes. It was established that during drawing of up to 80% degree, compressive stresses of 1100-1200 MPa degree are generated in the central layers of wire. The residual stresses on the wire surface accounted for 450-500 MPa and were tension in nature. The tension within a range of 70 kN to 82 kN combined with a temperature range of 360-380°С contributes to a two-fold decrease in residual stresses both in the central and surface layers of wire. When increasing temperature up to 400°С and maintaining the tension, it is possible to achieve maximum balance of residual stresses. Stranding stresses, whose high values entail failure of lay length and geometry of the studied strand may be fully eliminated only at tension of 82 kN and temperature of 400°С. Otherwise, stranding stresses result in opening of strands.


2021 ◽  
Author(s):  
luis Augusto sanabria ◽  
Xuerong Qin ◽  
Jin Li ◽  
Robert Peter Cechet

Abstract Most climatic models show that climate change affects natural perils' frequency and severity. Quantifying the impact of future climate conditions on natural hazard is essential for mitigation and adaptation planning. One crucial factor to consider when using climate simulations projections is the inherent systematic differences (bias) of the modelled data compared with observations. This bias can originate from the modelling process, the techniques used for downscaling of results, and the ensembles' intrinsic variability. Analysis of climate simulations has shown that the biases associated with these data types can be significant. Hence, it is often necessary to correct the bias before the data can be reliably used for further analysis. Natural perils are often associated with extreme climatic conditions. Analysing trends in the tail end of distributions are already complicated because noise is much more prominent than that in the mean climate. The bias of the simulations can introduce significant errors in practical applications. In this paper, we present a methodology for bias correction of climate simulated data. The technique corrects the bias in both the body and the tail of the distribution (extreme values). As an illustration, maps of the 50 and 100-year Return Period of climate simulated Forest Fire Danger Index (FFDI) in Australia are presented and compared against the corresponding observation-based maps. The results show that the algorithm can substantially improve the calculation of simulation-based Return Periods. Forthcoming work will focus on the impact of climate change on these Return Periods considering future climate conditions.


Author(s):  
J. J. LUCHKO ◽  
V. V. KOVALCHUK

Purpose. The purpose of the work is to establish the real technical condition of transport structures made of corrugated metal structures on the basis of the analysis of scientific and technical sources.And to analyze the experience of operation of metal corrugated structures in the soil environment and to form and generalize the problems of ensuring the reliability and durability of structures made of metal corrugated structures in the conditions of operation on railways and highways of Ukraine. Methodology. To achieve this goal, a review of scientific and technical sources and regulations of different countries on the technical condition of transport facilities in Ukraine was conducted. In particular, data on the distribution of bridges and pipes made of corrugated metal structures by mode of transport are given. It is shown that the development and implementation of new technologies for the repair of existing defective pipes and small bridges, both on the railways and highways of Ukraine is a very important issue. A thorough analysis of the experience of operation of corrugated metal structures in the soil environment in different countries was conducted. Data on the main inadmissible defects of pipes and the reasons of their development are given. CMS' (corrugated metal structures) corrosion and other defects are given. A number of examples of overpass defects, collapse of bridges and structures with MCS in operation are presented. The qualitative indicators of metal corrugated structures, their advantages and disadvantages are also considered, the problems and the analysis of ensuring the reliability and durability of the structures with CMS in the conditions of operation on the railways and highways of Ukraine are formulated. Findings. An analysis of domestic and foreign scientific and technical sources on the technical condition of transport facilities in Ukraine was conducted. In particular, the experience of operation of corrugated metal structures in different countries of the world is studied and generalized. The analysis and synthesis of problems of ensuring the reliability and durability of buildings with CMS in the conditions of operation on the railways and highways of Ukraine. Originality. As a result of the analysis of the technical condition of transport facilities operated on railways and highways of Ukraine, it was found that about 15 % of transport facilities – small and medium bridges and culverts on Ukrainian railways and about 45 % of transport facilities on Ukrainian roads have unacceptable defects and require immediate repair and replacement. Also, it was established on the basis of research that there are no methods for assessing the load-bearing capacity of transport facilities with CMS in the presence in the body of the embankment of the railway or highway metal corrugated structures with a diameter greater than 6 m. It was determined that standards don't include regulations on design and monitoring of CMS on railway tracks. Practical value. On the basis of these data it was possible to offer directions of theoretical and experimental research and methods of calculation, tests of CMS and diagnostics of a technical condition of transport structures with CMS. In particular, the measurement of the impact of the environment on the bearing capacity of the CMS and the measurement of residual deformations of the corrugated metal pipe on the railway track. Execution of the analysis and synthesis of methods of calculation of transport constructions with CMS will lead to improvement of methods of calculation of CMS.


2012 ◽  
Vol 548 ◽  
pp. 372-376
Author(s):  
O.P. Muraviev ◽  
M.R. Sikhimbayev ◽  
B.N. Absadykov ◽  
B.S. Arymbekov ◽  
Y.O. Tkacheva

In the article the results of the design and analysis of mathematical model for determining residual stresses in the surface of layer at parts processed by plastic surface deformation (PSD) in which the rollers having an arbitrary shape and size. It is shown that for the calculation of stresses in the surface of layer it should not be defined by them at a forcing point but by a function of contact stresses. Integral equations are obtained for calculating the stresses in the body parts at the processing of PSD rolls of arbitrary size and shape of the stress distribution over the contact area. We found that the tangential and radial residual stresses depend on the magnitude of the force F and its distance from the point at which the voltage is considered in detail. There is a sharp decrease in the influence of forces on the stress in the surface of the part of the distance to the point in question.The calculated data generated by the proposed method are highly matches with data during the experimental investigations. Maximum deviations of the calculated values do not exceed the errors of the experiments and adequate treatment of each other at a significance level of 0.05.


2021 ◽  
Vol 899 ◽  
pp. 486-492
Author(s):  
Liubov I. Lesnyak ◽  
Vladimir I. Andreev ◽  
Serdar B. Yazyev ◽  
Arthur A. Avakov ◽  
Irina G. Doronkina

In conclusion, one should say that, to determine the approximate stress state in the body, it is quite enough to consider the problem in a linearized problem setting. When determining the deformed state, it is necessary to consider the problem exclusively in a nonlinear setting.


2013 ◽  
Vol 768-769 ◽  
pp. 351-357
Author(s):  
H. Sato ◽  
Y. Enomoto ◽  
K. Omote ◽  
S.I. Tanaka

Creep behavior of solid solution alloys are reasonably explained by concepts of the “internal and effective stress of high temperature deformation”. The internal stress is considered to be brought by formation of dislocation substructures, and the dislocation structures should have caused long range stress filed in interior of materials. Thus, residual stresses should also be brought by the same origin. In this paper, measurements of the residual stresses after creep deformation by 2D-Xray method are attempt, and the stresses are compared with so-called the “internal stress of high temperature deformation” measured by strain-dip stress-transient test. Although, the stress tensor depends on the deformation condition, the relation with the applied stress show complex manner at a glance. The maximum principal stresses, however, show relatively smaller than the applied stress, and fairly agree with that measured by strain-dip stress-transient technique. Importance of further considerations of the origin of so-called internal stresses is suggested.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Wen Chen ◽  
Thomas Voisin ◽  
Yin Zhang ◽  
Jean-Baptiste Florien ◽  
Christopher M. Spadaccini ◽  
...  

Abstract Additively manufactured (AM) metallic materials commonly possess substantial microscale internal stresses that manifest as intergranular and intragranular residual stresses. However, the impact of these residual stresses on the mechanical behaviour of AM materials remains unexplored. Here we combine in situ synchrotron X-ray diffraction experiments and computational modelling to quantify the lattice strains in different families of grains with specific orientations and associated intergranular residual stresses in an AM 316L stainless steel under uniaxial tension. We measure pronounced tension–compression asymmetries in yield strength and work hardening for as-printed stainless steel, and show they are associated with back stresses originating from heterogeneous dislocation distributions and resultant intragranular residual stresses. We further report that heat treatment relieves microscale residual stresses, thereby reducing the tension–compression asymmetries and altering work-hardening behaviour. This work establishes the mechanistic connections between the microscale residual stresses and mechanical behaviour of AM stainless steel.


Author(s):  
M. Salahshoor ◽  
Y. B. Guo

When a device is implanted into the body, into either hard or soft tissue, the body will respond. While the bulk material of the device is often important for integrity and mechanical success, the device surface is at the interface with biology. Major effort has been spent modifying a biomaterial surface in order to elicit or inhibit a biological response. Metallic biodegradable Magnesium-Calcium (Mg-Ca) alloys have attracted an increased attention for orthopedic fixation applications. This research focuses on low plasticity burnishing (LPB) as a novel surface modification technique that is added to the surface to control biodegradation as a biological response. The effects of burnishing pressure as an important process parameter on surface integrity characteristics such as surface roughness, surface topography, and residual stresses are investigated. Burnished surface roughness is smaller than the machined ones. However, some amount of waviness is observed which might be due to large diameter of the burnishing ball and sever plastic deformation. High compressive residual stresses are measured on the burnished surface.


Sign in / Sign up

Export Citation Format

Share Document