Rheology of molding materials for extruding billets to obtain copper-containing alumina-silica catalysts

Author(s):  
V. I. Vanchurin ◽  
A. V. Belyakov ◽  
D. Sh. Dzhumamuhamedov ◽  
A. V. Fedotov

Using the example of the CAS ‒ C ceramic copper-aluminumsiliceous catalyst for dehydrogenation of cyclohexanol to cyclohexanone in the production of urea, the rheological and mechanical properties of the copper-containing aluminumsiliceous plastic mass depending on its composition are studied. The data on the influence of technological and structural conditions for molding the mass in a screw press on the performance of extrudable ceramic billets are presented. The revealed features in the behavior of the moldable plastic mass are explained by differences in the surface properties of silica particles interacting with the precursor of the active component at the stage of catalyst synthesis. The composition of the molding mass and the extrusion regimes on screw extruders are established, which ensure the output of high-quality and mechanically strong ceramic billets (extrudates).

2014 ◽  
Vol 1025-1026 ◽  
pp. 215-220 ◽  
Author(s):  
Sasirada Weerasunthorn ◽  
Pranut Potiyaraj

Fumed silica particles (SiO2) were directly added into poly (butylene succinate) (PBS) by melt mixing process. The effects of amount of fumed silica particles on mechanical properties of PBS/fumed silica composites, those are tensile strength, tensile modulus, impact strength as well as flexural strength, were investigated. It was found that the mechanical properties decreased with increasing fumed silica loading (0-3 wt%). In order to increase polymer-filler interaction, fumed silica was treated with 3-glycidyloxypropyl trimethoxysilane (GPMS), and its structure was analyzed by FT-IR spectrophotometry. The PBS/modified was found to possess better tensile strength, tensile modulus, impact strength and flexural strength that those of PBS/fumed silica composites.


2012 ◽  
Vol 628 ◽  
pp. 482-485
Author(s):  
Yulia A. Lukina ◽  
Andrey V. Stepanov ◽  
Evgeny N. Bobrov

The paper deals with manufacturing technology for the forged rolls and sleeves from adamite steel at Electrostal Plant of Heavy Machinery (JSC «EZTM»). The influence of different heat treatments on microstructure and mechanical properties of the level of adamite steel is presented.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ramesh Chand ◽  
Vishal S. Sharma ◽  
Rajeev Trehan ◽  
Munish Kumar Gupta

Purpose A nut bolt joint is a primary device that connects mechanical components. The vibrations cause bolted joints to self-loosen. Created by motors and engines, leading to machine failure, and there may be severe safety issues. All the safety issues and self-loosen are directly and indirectly the functions of the accuracy and precision of the fabricated nut and bolt. Recent advancements in three-dimensional (3D) printing technologies now allow for the production of intricate components. These may be used technologies such as 3D printed bolts to create fasteners. This paper aims to investigate dimensional precision, surface properties, mechanical properties and scanning electron microscope (SEM) of the component fabricated using a multi-jet 3D printer. Design/methodology/approach Multi-jet-based 3D printed nut-bolt is evaluated in this paper. More specifically, liquid polymer-based nut-bolt is fabricated in sections 1, 2 and 3 of the base plate. Five nuts and bolts are fabricated in these three sections. Findings Dimensional inquiry (bolt dimension, general dimensions’ density and surface roughness) and mechanical testing (shear strength of nut and bolt) were carried out throughout the study. According to the ISO 2768 requirements for the General Tolerances Grade, the nut and bolt’s dimensional examination (variation in bolt dimension, general dimensions) is within the tolerance grades. As a result, the multi-jet 3D printing (MJP)-based 3D printer described above may be used for commercial production. In terms of mechanical qualities, when the component placement moves from Sections 1 to 3, the density of the manufactured part decreases by 0.292% (percent) and the shear strength of the nut and bolt decreases by 30%. According to the SEM examination, the density of the River markings, sharp edges, holes and sharp edges increased from Sections 1 to 3, which supports the findings mentioned above. Originality/value Hence, this work enlightens the aspects causing time lag during the 3D printing in MJP. It causes variation in the dimensional deviation, surface properties and mechanical properties of the fabricated part, which needs to be explored.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3419 ◽  
Author(s):  
Beata Kaczmarek ◽  
Katarzyna Lewandowska ◽  
Alina Sionkowska

Collagen materials are widely used in biomedicine and in cosmetics. However, their properties require improvement for several reasons. In this work, collagen solution as well as collagen films were modified by the addition of ferulic acid (FA). Thin collagen films containing FA were obtained by solvent evaporation. The properties of collagen solution have been studied by steady shear tests. The structure and surface properties of collagen thin films were studied. It was found that for collagen solution with 5% addition of FA, the apparent viscosity was the highest, whereas the collagen solutions with other additions of FA (1%, 2%, and 10%), no significant difference in the apparent viscosity was observed. Thin films prepared from collagen with 1 and 2% FA addition were homogeneous, whereas films with 5% and 10% FA showed irregularity in the surface properties. Mechanical properties, such as maximum tensile strength and elongation at break, were significantly higher for films with 10% FA than for films with smaller amount of FA. Young modulus was similar for films with 1% and 10% FA addition, but bigger than for 2% and 5% of FA in collagen films. The cross-linking of collagen with ferulic acid meant that prepared thin films were elastic with better mechanical properties than collagen films.


2019 ◽  
Vol 29 (4) ◽  
pp. 384-389 ◽  
Author(s):  
Yanpeng Yang ◽  
Yunjie Ping ◽  
Youning Gong ◽  
Zhongchi Wang ◽  
Qiang Fu ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1628
Author(s):  
Emanuela Drago ◽  
Roberta Campardelli ◽  
Margherita Pettinato ◽  
Patrizia Perego

Innovation in food packaging is mainly represented by the development of active and intelligent packing technologies, which offer to deliver safer and high-quality food products. Active packaging refers to the incorporation of active component into the package with the aim of maintaining or extending the product quality and shelf-life. The intelligent systems are able to monitor the condition of packaged food in order to provide information about the quality of the product during transportation and storage. These packaging technologies can also work synergistically to yield a multipurpose food packaging system. This review is a critical and up-dated analysis of the results reported in the literature about this fascinating and growing field of research. Several aspects are considered and organized going from the definitions and the regulations, to the specific functions and the technological aspects regarding the manufacturing technologies, in order to have a complete overlook on the overall topic.


Sign in / Sign up

Export Citation Format

Share Document