scholarly journals Identifikasi Batuan Gunung Api Purba di Pegunungan Selatan Yogyakarta Bagian Barat Berdasarkan Pengukuran Geolistrik

EKSPLORIUM ◽  
2015 ◽  
Vol 36 (1) ◽  
pp. 57 ◽  
Author(s):  
Winarti Winarti ◽  
Hill Gendoet Hartono

Daerah penelitian berada di perbatasan antara Dataran Yogyakarta dengan Pegunungan Selatan Yogyakarta bagian barat. Secara morfologi dan litologi yang tersingkap, indikasi gunung api purba yang dibuktikan dengan keterdapatan batuan gunung api seperti lava, breksi, dan tuf. Tujuan dari penelitian ini adalah identifikasi adanya batuan gunung api purba di bawah permuaan sepanjang Berbah-Imogiri berdasarkan data geolistrik. Metode yang digunakan adalah melakukan pengukuran geolistrik di empat lokasi secara mapping dengan konfigurasi dipole-dipole. Panjang bentangan untuk setiap lintasan 500 meter. Hasil pengukuran geolistrik menunjukkan pada lintasan 1 di Sumber Kulon-Kalitirto, Kecamatan Berbah,diinterpretasi adanya batuan gunung api berupa lava basal dan tuf. Lintasan 2 di Pilang-Srimulyo, Kecamatan Piyungan, diinterpretasi berupa breksi skoria. Lintasan 3 di Ngeblak-Bawuran, Kecamatan Pleret, diinterpretasi adanya tuf dan lava. Lintasan 4 di Guyangan-Wonolelo, Kecamatan Pleret diinterpretasi berupa tuf dan lava. Batuan gunung api secara umum terbaca mempunyai nilai tahanan jenis yang tinggi, yaitu >300 Ωm. Adanya kandungan air atau mineralisasi cenderung menurunkan nilai tahan jenis batuan gunung api tersebut. The study area is located between western part of Yogyakarta plains and Southern Mountains. The morphology and lithology along the Berbah-Imogiri show the existence of an ancient volcano. This is proven by outcrop of volcanic rock like lava, breccia and tuff. The aim of this study is to identify the existence of ancient volcanic rocks along Berbah-Imogiri based on geoelectrical data. The method used  to perform measurements at four locations geoelectrical mapping with dipole-dipole configuration a long stretch of track for every 500 meters. Geoelectrical measurement results showed on track 1 in Source Kulon-Kalitirto, District Berbah, interpretedas  volcanic rocks such as basalt lava and tuff. Tracks 2 in Pilang-Srimulyo, District Piyungan, iterpreted as volcanic rocks of scoria breccia. Tracks 3 in Ngeblak-Bawuran, District Pleret, interpreted as lava and tuff. And track 4 on Guyangan-Wonolelo, District Pleret interpreted as form of tuff and lava. Volcanic rocks are generally having a high resistivity value > 300 Ωm. The content of water or mineralization tends to reduce the resistivity value of resistant volcanic rock.

2012 ◽  
Vol 524-527 ◽  
pp. 16-23
Author(s):  
Jian Guo Huang ◽  
Run Sheng Han ◽  
Ren Tao ◽  
Zhi Qiang Li

The Late Triassic Tumugou Formation volcanic rocks which belongs to typical island arc volcanic rocks in southern end of Yidun island arc belt is located at the eastern of the Zhongdian ,NW Yunnan, SW China. The volcanic rocks can be divided into three categories:andesitic basalt, andesite, quartz andesite, etc. Through geochemical analysis the major elements, rare earth ele and trace element in volcanic rocks, SiO255.18-57.59×10-2,TiO21.16-1.45×10-2,Na2O+K2O5.11-8.05×10-2.consider it is calc-alkaline- alkaline Series of high-K andesite, volcanic may be controlled by the crystal fractionation of magma.Rb31.50-101×10-6,Ba1310-12300×10-6,Nb/Ta11.4-15.5,REE166.07-240.78×10-6,δEu0.74-1.00,REE distribution patterns show oblique to the HREE side and enrichment in LREE .Eu anomaly is not obvious. It is can see from the relevant figure about trace element, it is very similar in magmatic distribution patterns between volcanic rock and Volcanic-arc rock, indicating that the volcanic in this area may be formed in volcanic-arc environment. From east to west, Magma source depth have regular change with the really thickness of mainland shell. Explain that Tumugou Formation volcanic rock is subduction by Ganzi- Litang Ocean basin from east to west. Hongshan-Ousaila region of eastern edge of Zhongdian is the volcanic island arc system during the passive continental margin into an active continental margin.


2004 ◽  
Vol 41 (2) ◽  
pp. 165-182 ◽  
Author(s):  
Pierre A Friele ◽  
John J Clague

Mount Meager massif, the northernmost volcano of the Cascade volcanic belt, has been the site of very large (>107 m3) landslides in the Holocene Epoch. We document two complex landslides at Pylon Peak, one of the peaks of the Mount Meager massif, about 7900 14C and 3900 14C years ago (about 8700 and 4400 calendar years ago). Together, the two landslides displaced ~ 6 × 108 m3 of volcanic rock from the south flank of Pylon Peak into nearby Meager Creek valley. Each landslide consisted of at least two phases, an early debris flow resulting from failure of hydrothermally altered pyroclastic rock at mid levels on the mountain and a later rock avalanche from a higher source. Both debris flows likely traveled down Meager Creek, and preliminary evidence from drilling indicates the 4400-year-old event traveled down Lillooet River into areas that are now settled and where population density is increasing rapidly. The mobility of the debris flows was due to the high content of fine, weathered volcanic sediment and the availability of sufficient water. The causes of the landslides are a wet climate and the presence of weak, hydrothermally altered volcanic rock containing abundant phreatic water on glacially oversteepened slopes. The landslides may have been triggered by earthquakes or by upwelling of magma to shallow depths within the volcano. However, they may also have occurred without specific triggers following extended periods of progressive weakening of the volcanic rocks.


2017 ◽  
Vol 50 (4) ◽  
pp. 1903
Author(s):  
P. Koutsovitis ◽  
C. Kanellopoulos ◽  
S. Passa ◽  
K. Foni ◽  
E. Tsapara ◽  
...  

The Lapis Lacedaemonius (krokeatis lithos) is a well-known meta-volcanic rock of great historical importance. Petrographic observations, mineral chemistry data, as well as geochemical analysis of selected samples, reveal that these rocks are porphyritic metabasaltic rocks which have been significantly affected by saussuritization and also by restricted silicification processes. They represent subduction related calc-alkaline volcanic rocks which also appear in the adjacent Hellenic Triassic volcanic outcrops, and appear to be associated with the rift/drift phase within the Pindos oceanic realm. The unique features of the Lapis Lacedaemonius, when compared to geochemically similar volcanic rock outcrops, are mainly attributed to their distinct porphyritic textures, predominantly with microlithically textured groundmass along with the coarse grained plagioclase, and to saussuritization processes. The Lapis Lacedaemonius seems to have been formed in a sub-volcanic system closely associated with epidosites, suggesting that metasomatism occurred within hydrothermal upflow zones.


2020 ◽  
Author(s):  
Michael Heap ◽  
Marlène Villeneuve ◽  
Fabien Albino ◽  
Jamie Farquharson ◽  
Elodie Brothelande ◽  
...  

<p>The accuracy of elastic analytical solutions and numerical models, widely used in volcanology to interpret surface ground deformation, depends heavily on the Young’s modulus chosen to represent the medium. The paucity of laboratory studies that provide Young’s moduli for volcanic rocks, and studies that tackle the topic of upscaling these values to the relevant lengthscale, has left volcano modellers ill-equipped to select appropriate Young’s moduli for their models. Here we present a wealth of laboratory data and suggest tools, widely used in geotechnics but adapted here to better suit volcanic rocks, to upscale these values to the scale of a volcanic rock mass. We provide the means to estimate upscaled values of Young’s modulus, Poisson’s ratio, shear modulus, and bulk modulus for a volcanic rock mass that can be improved with laboratory measurements and/or structural assessments of the studied area, but do not rely on them. In the absence of information, we estimate upscaled values of Young’s modulus, Poisson’s ratio, shear modulus, and bulk modulus for volcanic rock with an average porosity and an average fracture density/quality to be 5.4 GPa, 0.3, 2.1 GPa, and 4.5 GPa, respectively. The proposed Young’s modulus for a typical volcanic rock mass of 5.4 GPa is much lower than the values typically used in volcano modelling. We also offer two methods to estimate depth-dependent rock mass Young’s moduli, and provide two examples, using published data from boreholes within Kīlauea volcano (USA) and Mt. Unzen (Japan), to demonstrate how to apply our approach to real datasets. It is our hope that our data and analysis will assist in the selection of elastic moduli for volcano modelling. To this end, our new publication (Heap et al., 2019), which outlines our approach in detail, also provides a Microsoft Excel© spreadsheet containing the data and necessary equations to calculate rock mass elastic moduli that can be updated when new data become available. The selection of the most appropriate elastic moduli will provide the most accurate model predictions and therefore the most reliable information regarding the unrest of a particular volcano or volcanic terrain.</p><p>Heap, M.J., Villeneuve, M., Albino, F., Farquharson, J.I., Brothelande, E., Amelung, F., Got, J.L. and Baud, P., 2019. Towards more realistic values of elastic moduli for volcano modelling. Journal of Volcanology and Geothermal Research, https://doi.org/10.1016/j.jvolgeores.2019.106684.</p>


2021 ◽  
Author(s):  
Ayoub AZIZ ◽  
Abdellah BENZAOUAK ◽  
Abdelilah BELLIL ◽  
Thamer ALOMAYRI ◽  
Iz-Eddine EL AMRANI EL HASSANI ◽  
...  

Abstract The geopolymer preparation based on natural pozzolan is a promising route. Thus, improving the physicochemical properties of these geopolymers by adding other volcanic rocks merits investigation. The present work aims to study the effect of perlite addition, as an acidic volcanic rock, on the physico-chemical and microstructural properties of geopolymers based on pozzolan (basic volcanic rock). The perlite proportion varied between 0 and 50%. A mixture of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) was used as an alkaline activator. The perlite effect on the physico-mechanical properties of the synthesized geopolymers was evaluated by the compressive strength (Rc), P-wave velocity (Vp), bulk density (D), and porosity (P). The microstructural aspects have been explored by X-ray Diffractometry (XRD), Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray spectroscopy (EDS). The results highlight the possibility of obtaining an eco-efficient geopolymer, with compressive strength of up to 50 MPa at 28 days by partially replacing the pozzolan by 40% of the perlite, due to the formation of more amorphous N-A-S-H type gel. However, the excessive content (over 40%) of perlite had a negative effect on the development of the compressive strength and microstructure of the pozzolan-based geopolymer, which was related to the formation of zeolitic phases in the geopolymer matrix. This study confirms the promise of using pozzolan-perlite-based geopolymers as sustainable building materials, which could significantly promote the development of geo-resources and environmental protection in the construction sector.


2021 ◽  
Vol 11 (10) ◽  
pp. 4455
Author(s):  
Alfonso Gutiérrez-Martín ◽  
José I. Yenes ◽  
Marta Fernández-Hernández ◽  
Ricardo Castedo

The paper proposes a novel methodology for the stabilization of shallow foundations, with a simplified model combined with 3D electrical resistivity tomography (ERT-3D and consolidation injections. To determine its usefulness, the method has been applied in a case located in Estepona (southern Spain). The chosen tomography model is the dipole–dipole configuration, with an optimized distance between electrodes of 0.80 m for a better visualization of the foundation subsoil; with this parameterization, a total of 72 electrodes were installed in the analyzed case. In this work, the depth of the anomaly in the building’s supporting subsoil was detected ranging from 2.00 m to 3.90 m deep. The study also delineates areas of high resistivity variations (50–1000 Ω m) in the middle and eastern end of the field. These data have been validated and corroborated with a field campaign. The results of the ERT-3D monitoring are presented, once the investment data has been processed with the RES3DINV software, from the beginning to the end of the stabilization intervention. The novelty occurs with the interaction between the tomography and the foundation consolidation injections, until the final stabilization. This is a very useful methodology in case of emergency consolidation, where there is a need to minimize damage to the building. Thus, people using this combined system will be able to practically solve the initial anomalies of the subsoil that caused the damages, in a non-invasive way, considerably lowering the value of the resistivities.


Author(s):  
Dwi Fitri Yudiantoro ◽  
Ramonada Taruna Perwira ◽  
Muchamad Ocky Bayu Nugroho

Lamongan volcano is one of the unique volcanoes in the Sunda Volcano. This volcano has side eruption centers or on the slopes of the volcano. The morphology of parasitic eruptions in this volcanoes complex includes maars and boccas. There are about 64 parasitic eruption centers consisting of 37 volcanic cones (bocca) and 27 ranu (maar). The purpose of this research is to study the characteristics of lithology and petrogenesis of this volcano complex, especially in Ranu Pakis and surrounding areas. The analytical method used is to do geological mapping and petrographic analysis. The lithology found in this research area consists of magmatic and phreatomagmatic eruption deposits. Genetically this lithology includes pyroclastic flow, pyroclastic fall (scoria fall and phreatomagmatic scoria fall/accretionary lapili), tuff (phreatic) and basaltic lava. In some pyroclastic deposits, especially in maar there are fragments of accretionary lapilli, while in bocca there are basaltic lavas. Other fragments present in pyroclastic deposits are basalt scoria blocks and bombs embedded in the groundmass of volcanic ash. The results of petrographic analysis indicate that the volcanic rocks in the study area are calc alkaline affinity consisting of pyroxene andesite, basalt and pyroxene basalt lava. The pyroxene basalt lava is composed by plagioclase, clinopyroxene and little olivine embedded in the volcanic glass. Lavas are structured scoria and textured porphyritic, intersertal, trachytic, aphyric and pilotaxitic. Trachytic texture is found in the basalt fragments of pyroxene from the pyroclastic fall deposits in Ranu Pakis and Ranu Wurung. While pyroxene andesite lavas composed by plagioclase, clinopyroxene embedded in the volcanic glass. Lavas are structured scoria and textured porphyritic, intergranular, pilotaxitic and aphyric.


This paper presents the study on aluminium-doped zinc oxide (AZO) films prepared by atmospheric atomic layer deposition (AALD) using Diethylzinc (DEZ), Zn(C2H5)2, and Trimethylaluminum (TMA), Al(CH3)3 as precursors. The optimal condition for doping was investigated by changing in DEZ/TMA ratio. The crystal structure of fabricated thin films shows the hexagonal wurtzite structure with the orientation along the c-axis. The influence of heat treatment on the grain size, carrier type and concentration of post-fabricated films deposited on the different substrates which are borosilicate glass and sapphire was also analysed. The Hall measurement to determine the carrier type and resistivity at room temperature to 400oC was performed. The measurement results show that as-deposited samples behave as alloy-like property with p-type carriers and high resistivity. However, they turned into n-type nature as expected with the increase in carrier concentration and consequently the marked decrease in electrical resistance when annealed at the higher temperatures that are at 500oC and 900oC (i.e, 773 and 1173 K). In general, the obtained films with optimized experimental conditions of as- and post-fabrication can be used for thermoelectric applications.


Author(s):  
Rizka Rizka ◽  
Beta Arroma Piskora ◽  
Soni Satiawan ◽  
Hendra Saputra

Time-lapse resistivity method is an implementation of the resistivity method that is executed exactly at the same spot but with various in time. In this study, the technique uses to identify the dynamics of groundwater fluids. The application of the time-lapse resistivity method was carried out by performing a sandbox model simulation that contains layers of rocks with a fault structure. The rock layers consist of tuff, fine sandstone, shale, coarse sandstone, gravel that represents confined and unconfined aquifers. The simulation was achieved by applying the Electrical Resistivity Tomography (ERT) dipole-dipole configuration at the same place, and measurements with 3 different conditions, namely dry, wet conditions filled with 2.5% water and wet conditions filled with 5% water. Data acquisition uses Naniura resistivity meters with a track length of 96 cm. The first measurement results (dry conditions) obtained a range of resistivity values ​​from 3.7 to 168.1 Ω.m, the second measurement (wet conditions filled 2.5% water) obtained the range of resistivity values ​​from 3.3 to 110.8 Ω.m and the third measurement (wet conditions) filled with 5% water the resistivity values ​​range from 1.7 to 91.2 Ω.m. Following the results of time-lapse inversion processing, a larger percentage change in the amount of 5.6% due to water absorption by the surface which then migrates into the inner layer. Whereas the percentage of desaturation ranges is from -3.11 to 0.217 %, refer to Archie’s Law assumes conduction is caused by water content.


Sign in / Sign up

Export Citation Format

Share Document