scholarly journals Evaluation of bio-coagulants for colour removal from dye synthetic wastewater: characterization, adsorption kinetics, and modelling approach

Water SA ◽  
2020 ◽  
Vol 46 (2 April) ◽  
Author(s):  
IA Obiora-Okafo ◽  
OD Onukwuli ◽  
NC Eli-Chukwu

Dye usage for industrial applications has been on the increase and these activities generate large amounts of dye-constituted wastewater that should be treated before environmental discharge or reuse. Various studies have shown the application of natural organic polymer (NOP) coagulants in dye removal from industrial wastewater. In this research, the coagulation performances of Vigna unguiculata (VU) and Telfairia occidentalis (TO) for colour removal from crystal Ponceau 6R dye synthetic wastewater was studied. The proximate compositions, structure, and surface morphologies of the coagulants were investigated using standard methods, i.e. Fourier-Transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Colour removal was evaluated through the time-dependent decrease in particle concentration and thus growth of flocs. Effects of the process parameters, including pH, coagulant dosage, dye concentration (DC), settling time, and temperature were preliminarily tested and the best range experimentally determined. The optimal operating conditions established were pH 2, 800 mg∙L−1 coagulant dosage, 100 mg∙L−1 dye concentration, 300 min, and 303 K. The order of greatest removal was VUC > TOC with optimum efficiency of 93.5% and 90.7%, respectively. The values of K and α obtained for VUC and TOC were 8.09 x 10−4 L∙mg−1∙min−1, 1.7 and 9.89 x 10-4 L∙mg−1∙min−1, 1.6, respectively. Coagulation time, Tag, calculated and deduced from the particle distribution plot, showed a rapid coagulation process. Coagulation-adsorption kinetics indicated agreement with the pseudo-second-order model deducing that chemisorption is the rate-controlling step. It further indicates that particle adsorption on the polymer surfaces occurred mostly as a mono-molecular layer and according to the chemisorption mechanism. Cross-validation showed good prediction of the experimental data. The selected coagulants have the potential for application as efficient coagulants while also showing significant adsorption characteristics. The application of kinetics and modelling in separation processes involving particle transfer is especially required in wastewater treatment.

Water SA ◽  
2020 ◽  
Vol 46 (2 April) ◽  
Author(s):  
IA Obiora-Okafo ◽  
OD Onukwuli ◽  
NC Eli-Chukwu

Dye usage for industrial applications has been on the increase and these activities generate large amounts of dye-constituted wastewater that should be treated before environmental discharge or reuse. Various studies have shown the application of natural organic polymer (NOP) coagulants in dye removal from industrial wastewater. In this research, the coagulation performances of Vigna unguiculata (VU) and Telfairia occidentalis (TO) for colour removal from crystal Ponceau 6R dye synthetic wastewater was studied. The proximate compositions, structure, and surface morphologies of the coagulants were investigated using standard methods, i.e. Fourier-Transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Colour removal was evaluated through the time-dependent decrease in particle concentration and thus growth of flocs. Effects of the process parameters, including pH, coagulant dosage, dye concentration (DC), settling time, and temperature were preliminarily tested and the best range experimentally determined. The optimal operating conditions established were pH 2, 800 mg∙L−1 coagulant dosage, 100 mg∙L−1 dye concentration, 300 min, and 303 K. The order of greatest removal was VUC > TOC with optimum efficiency of 93.5% and 90.7%, respectively. The values of K and α obtained for VUC and TOC were 8.09 x 10−4 L∙mg−1∙min−1, 1.7 and 9.89 x 10-4 L∙mg−1∙min−1, 1.6, respectively. Coagulation time, Tag, calculated and deduced from the particle distribution plot, showed a rapid coagulation process. Coagulation-adsorption kinetics indicated agreement with the pseudo-second-order model deducing that chemisorption is the rate-controlling step. It further indicates that particle adsorption on the polymer surfaces occurred mostly as a mono-molecular layer and according to the chemisorption mechanism. Cross-validation showed good prediction of the experimental data. The selected coagulants have the potential for application as efficient coagulants while also showing significant adsorption characteristics. The application of kinetics and modelling in separation processes involving particle transfer is especially required in wastewater treatment.


Water SA ◽  
2020 ◽  
Vol 46 (2 April) ◽  
Author(s):  
IA Obiora-Okafo ◽  
OD Onukwuli ◽  
NC Eli-Chukwu

Dye usage for industrial applications has been on the increase and these activities generate large amounts of dye-constituted wastewater that should be treated before environmental discharge or reuse. Various studies have shown the application of natural organic polymer (NOP) coagulants in dye removal from industrial wastewater. In this research, the coagulation performances of Vigna unguiculata (VU) and Telfairia occidentalis (TO) for colour removal from crystal Ponceau 6R dye synthetic wastewater was studied. The proximate compositions, structure, and surface morphologies of the coagulants were investigated using standard methods, i.e. Fourier-Transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Colour removal was evaluated through the time-dependent decrease in particle concentration and thus growth of flocs. Effects of the process parameters, including pH, coagulant dosage, dye concentration (DC), settling time, and temperature were preliminarily tested and the best range experimentally determined. The optimal operating conditions established were pH 2, 800 mg∙L−1 coagulant dosage, 100 mg∙L−1 dye concentration, 300 min, and 303 K. The order of greatest removal was VUC > TOC with optimum efficiency of 93.5% and 90.7%, respectively. The values of K and α obtained for VUC and TOC were 8.09 x 10−4 L∙mg−1∙min−1, 1.7 and 9.89 x 10-4 L∙mg−1∙min−1, 1.6, respectively. Coagulation time, Tag, calculated and deduced from the particle distribution plot, showed a rapid coagulation process. Coagulation-adsorption kinetics indicated agreement with the pseudo-second-order model deducing that chemisorption is the rate-controlling step. It further indicates that particle adsorption on the polymer surfaces occurred mostly as a mono-molecular layer and according to the chemisorption mechanism. Cross-validation showed good prediction of the experimental data. The selected coagulants have the potential for application as efficient coagulants while also showing significant adsorption characteristics. The application of kinetics and modelling in separation processes involving particle transfer is especially required in wastewater treatment.


Author(s):  
Tachung Yang ◽  
Wei-Ching Chaung

The accuracy of stiffness and damping coefficients of bearings is critical for the rotordynamic analysis of rotating machinery. However, the influence of bearings depends on the design, manufacturing, assembly, and operating conditions of the bearings. Uncertainties occur quite often in manufacturing and assembly, which causes the inaccuracy of bearing predictions. An accurate and reliable in-situ identification method for the bearing coefficients is valuable to both analyses and industrial applications. The identification method developed in this research used the receptance matrices of flexible shafts from FEM modeling and the unbalance forces of trial masses to derive the displacements and reaction forces at bearing locations. Eight bearing coefficients are identified through a Total Least Square (TLS) procedure, which can handle noise effectively. A special feature of this method is that it can identify bearing coefficients at a specific operating speed, which make it suitable for the measurement of speed-dependent bearings, like hydrodynamic bearings. Numerical validation of this method is presented. The configurations of unbalance mass arrangements are discussed.


2021 ◽  
Author(s):  
Domenico Tommasino ◽  
Matteo Bottin ◽  
Giulio Cipriani ◽  
Alberto Doria ◽  
Giulio Rosati

Abstract In robotics the risk of collisions is present both in industrial applications and in remote handling. If a collision occurs, the impact may damage both the robot and external equipment, which may result in successive imprecise robot tasks or line stops, reducing robot efficiency. As a result, appropriate collision avoidance algorithms should be used or, if it is not possible, the robot must be able to react to impacts reducing the contact forces. For this purpose, this paper focuses on the development of a special end-effector that can withstand impacts and is able to protect the robot from impulsive forces. The novel end-effector is based on a bi-stable mechanism that decouples the dynamics of the end-effector from the dynamics of the robot. The intrinsically non-linear behavior of the end-effector is investigated with the aid of numerical simulations. The effect of design parameters and the operating conditions are analyzed and the interaction between the functioning of the bi-stable mechanism and the control system is studied. In particular, the effect of the mechanism in different scenarios characterized by different robot velocities is shown. Results of numerical simulations assess the validity of the proposed end-effector, which can lead to large reductions in impact forces.


2021 ◽  
pp. 24-38
Author(s):  
Devyanshu Sachdev ◽  
Shyam Sunder Mishra ◽  
Srinivas Tadepalli

The current work centres around on the expulsion of toxic heavy metals from mechanical effluents through the cycle of adsorption. This traditional approach is expensive, henceforth the utilization of ease, bountiful naturally neighbourly bio sorbents must be utilized. Adsorption conduct of copper and lead from waste water has been researched in this paper utilizing adsorbent like used tea powder waste. Copper and lead are profoundly harmful metal particles and considered as the need contamination delivered from different chemical ventures electroplating, blending exercises, smelting, battery manufacture etc. The effluents have been unnecessarily delivered into the climate because of expeditious industrialization and have made a worldwide concern. Hence, they should be taken out before release. In current paper, the trial results did in batch adsorption measure utilizing the treated waste tea powder with engineered test arranged in the test center were tried and introduced. The different boundaries, for example, solution’s pH, initial metal ion concentration, temperature and adsorbent dosage on the adsorption of Cu and Pb were considered. The greatest evacuation of Copper was above (at pH 5) 90% was observed using used tea waste powder at 100 ppm Copper solution. The removal of lead was above 85% (at pH 5) was respectively observed at the same operating conditions.


2018 ◽  
Vol 8 (12) ◽  
pp. 2416 ◽  
Author(s):  
Ansi Zhang ◽  
Honglei Wang ◽  
Shaobo Li ◽  
Yuxin Cui ◽  
Zhonghao Liu ◽  
...  

Prognostics, such as remaining useful life (RUL) prediction, is a crucial task in condition-based maintenance. A major challenge in data-driven prognostics is the difficulty of obtaining a sufficient number of samples of failure progression. However, for traditional machine learning methods and deep neural networks, enough training data is a prerequisite to train good prediction models. In this work, we proposed a transfer learning algorithm based on Bi-directional Long Short-Term Memory (BLSTM) recurrent neural networks for RUL estimation, in which the models can be first trained on different but related datasets and then fine-tuned by the target dataset. Extensive experimental results show that transfer learning can in general improve the prediction models on the dataset with a small number of samples. There is one exception that when transferring from multi-type operating conditions to single operating conditions, transfer learning led to a worse result.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Wei Pu ◽  
Dong Zhu ◽  
Jiaxu Wang

In this study, a modified mixed lubrication model is developed with consideration of machined surface roughness, arbitrary entraining velocity angle, starvation, and cavitation. Model validation is executed by means of comparison between the obtained numerical results and the available starved elastohydrodynamic lubrication (EHL) data found from some previous studies. A comprehensive analysis for the effect of inlet oil supply condition on starvation and cavitation, mixed EHL characteristics, friction and flash temperature in elliptical contacts is conducted in a wide range of operating conditions. In addition, the influence of roughness orientation on film thickness and friction is discussed under different starved lubrication conditions. Obtained results reveal that inlet starvation leads to an obvious reduction of average film thickness and an increase in interasperity cavitation area due to surface roughness, which results in significant increment of asperity contacts, friction, and flash temperature. Besides, the effect of entrainment angle on film thickness will be weakened if the two surfaces operate under starved lubrication condition. Furthermore, the results show that the transverse roughness may yield thicker EHL films and lower friction than the isotropic and longitudinal if starvation is taken into account. Therefore, the starved mixed EHL model can be considered as a useful engineering tool for industrial applications.


2018 ◽  
Vol 20 (4) ◽  
pp. 49-59 ◽  
Author(s):  
I.A. Obiora-Okafo ◽  
O.D. Onukwuli

Abstract The performance of Vigna unguiculata coagulant (VUC) for colour removal from acid dye was investigated in this study. The proximate, structure and morphology of the coagulant were investigated using standard official methods, Fourier-Transform Infrared (FTIR) spectrometer and scanning electron microscopy (SEM), respectively. Response surface methodology (RSM) using face-centred central composite design (FCCD) optimized four process variables including pH, coagulant dosage, dye concentration and time. The colour removal efficiency obtained from the optimization analysis was 99.26% at process conditions of pH 2, coagulant dosage 256.09 mg/l, dye concentration 16.7 mg/l and time 540 min. The verification experiments agreed with the predicted values having a standard error value of 1.96%. Overlay contour plot established optimum areas where the predicted response variable is in an acceptable range (≥ 70%) with respect to optimum conditions. The FCCD approach was appropriate for optimizing the process giving higher removal efficiency when compared to the main effect plots.


Author(s):  
Simone Marchetti ◽  
Duccio Nappini ◽  
Roberto De Prosperis ◽  
Paolo Di Sisto

Abstract This paper describes the design of the Free Power Turbine (FPT) of the LM9000, in particularly the design of its Passive Clearance Control (PCC) system. The LM9000 is the aero-derivative version of the GE90-115B jet engine. Its core engine has many common parts with the GE90; what differs is the booster (low pressure compressor) and the lower pressure turbine (LPT). The booster of the LM9000 is without fan because the engine is not used to provide thrust but torque only, subsequently it has a new flow path [5]. The LPT has instead been replaced by an intermediate pressure turbine (IPT) and by the FPT. The IPT drives the booster, while the FPT is a free low-pressure turbine designed for both power generation and mechanical drive industrial applications, including LNG production plants. Due to its different application, the LM9000 FPT flow path differs sensibly from the GE90 LPT, however as the GE90 it is provided of a clearance control system that cools the casing in order to reduce its radial deflection. It is not the first time that a clearance control system has been used in industrial applications; in GE aero-derivative power turbines is already present in the LM6000 and LMS100. Design constraints, system complexity, high environment variability because the PCC is located outside the GT, harsh environments and long periods of usage still make the design of this component challenging. The design of the PCC has been supported by extensive heat transfer and mechanical simulations. Each PCC component has been addressed with a dedicated life calculation and all the blade and seal clearances have been estimated for all the operating conditions of the engine. Simulations have been validated by an extensive test campaign performed on the first engine.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 177
Author(s):  
Alberto Di Renzo ◽  
Giacomo Rito ◽  
Francesco P. Di Maio

Multi-component liquid-fluidized beds are encountered in a variety of industrial processes. Often, segregation severely affects the performance of the process unit. Unfortunately, size-driven and density-driven separation processes may occur with a complex interplay, showing prevailing mechanisms that change with the operating conditions. For example, when the solids exhibit contrasting differences in size and density, even the direction of segregation can turn out hard to predict, giving rise for some systems to the so-called “layer inversion phenomenon”. A systematic experimental investigation is presented on 14 different binary beds composed of glass beads and ABS spheres with different size and density ratios and different bed composition. The analysis allows assessing the reliability of a model for predicting the segregation direction of fluidized binary beds (the Particle Segregation Model, PSM). By measurements of the solids’ concentration at the surface, expansion/segregation properties and the inversion voidage are compared with the PSM predictions, offering a direct means of model validation. Both the segregation direction throughout the expansion range and the value of the inversion voidage are compared. Extensive qualitative agreement is obtained for 12 out of 14 fluidized mixtures. Quantitatively, the average discrepancy between predicted and measured inversion voidage is below 5%, with a maximum of 17%.


Sign in / Sign up

Export Citation Format

Share Document