scholarly journals The p–T–x-State Diagram of the Mg–Ni System

Author(s):  
Yu.V. Levinsky ◽  
◽  
M.M. Alymov ◽  
L.L. Rokhlin ◽  
◽  
...  

The analysis of equilibrium in the Mg–Ni system was carried out. Alloys on its basis are promising for use as sorbents and hydrogen storage (START). The conditions for the production and operation of such alloys imply strict control of the pressure of hydrogen. In this regard, phase equilibria in the Mg–Ni system must be considered not only depending on the composition and temperature, but also on the pressure of hydrogen. The most complete graphical representation of the equilibrium in the Mg–Ni system is given by a three-dimensional state diagram: pressure-temperature-composition (p–T–x), the projection of the three-phase equilibrium lines of this diagram on the pressure-temperature plane (p–T-state diagram), isobaric and isothermal sections of the diagram, diagram in pMg–T coordinates. Based on the analysis of experimental data on equilibrium in this system, the article presents the most important options of the listed types of diagrams. The presented diagram variants can be useful in optimizing the technology and operation of sorbents and START alloys of the Mg–Ni system.

1974 ◽  
Vol 14 (06) ◽  
pp. 573-592 ◽  
Author(s):  
K.H. Coats ◽  
W.D. George ◽  
Chieh Chu ◽  
B.E. Marcum

Coats, K.H., Member SPE-AIME, Intercomp Resource Development and Engineering, Inc., Houston, Texas George, W.D., Chu, Chieh, Member SPE-AIME, Getty Oil Co., Houston, Tx. Marcum, B.E., Member SPE-AIME, Getty Oil Co., Los Angeles, Calif. Abstract This paper describes a three-dimensional model for numerical simulation of steam injection processes. The model describes three-phase flow processes. The model describes three-phase flow of water, oil, and steam and heat flow in the reservoir and overburden. The method of solution simultaneously solves for the mass and energy balances and eliminates the need for iterating on the mass transfer (condensation) term.Laboratory data are reported for steamfloods of 5,780-cp oil in a 1/4 five-spot sand pack exhibiting three-dimensional flow effects. These experiments provide additional data for checking accuracy and provide additional data for checking accuracy and assumptions in numerical models. Comparisons of model results with several sets of experimental data indicate a need to account for effects of temperature on relative permeability. Calculated areal conformance of a steamflood in a confined five-spot depends strongly upon the alignment of the x-y grid axes relative to the diagonal joining injection and production wells. It has not been determined which, if either, of the two grid types yields the correct areal conformance.Model calculations indicate that steamflood pressure level strongly affects oil recovery. pressure level strongly affects oil recovery. Calculated oil recovery increases with decreasing pressure level. An example application illustrates pressure level. An example application illustrates the ability of the model formulation to efficiently simulate the single-well, cyclic steam stimulation problem. problem Introduction The literature includes many papers treating various aspects of oil recovery by steamflooding, hot waterflooding, and steam stimulation. The papers present laboratory experimental data, field papers present laboratory experimental data, field performance results, models for calculating fluid performance results, models for calculating fluid and heat flow, and experimental data regarding effects of temperature on relative permeability. The ultimate goal of all this work is a reliable engineering analysis to estimate oil recovery for a given mode of operation and to determine alternative operating conditions to maximize oil recovery.Toward that end, our study proposed to develop and validate an efficient, three-dimensional numerical model for simulating steamflooding, hot waterflooding, and steam stimulation. Laboratory steamflood experiments were conducted to provide additional data for validation. Desired model specifications included three-dimensional capability and greater efficiency than reported for previous models. Omitted from the specifications were temperature-dependent relative permeability and steam distillation effects.This paper describes the main features of the three-dimensional, steamflood model developed. Those features include a new method of solution that includes implicit water transmissibilities, that simultaneously solves for mass and energy balances, and that eliminates the need for iteration on the condensation term. Laboratory data are reported for steamfloods in a 1/4 five-spot model exhibiting three-dimensional flow effects. Numerical model applications described include comparisons with experimental data, a representative field-scale steamflood, and a cyclic steam stimulation example. REVIEW OF PREVIOUS WORK Early efforts in mathematical modeling of thermal methods concentrated on simulation of the heat flow and heat loss. Gottfried, in his analysis of in-situ combustion, initiated a series of models that solve fluid mass balances along with the energy balance. Davidson et al. presented an analysis for well performance during cyclic steam injection. Spillette and Nielsen treated hot waterflooding in two dimensions. Shutler described three-phase models for linears and two-dimensional steamflooding, and Abdalla and Coats treated a two-dimensional steamflood model using the IMPES method of solution. SPEJ P. 573


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Maria Laura Delle Delle Monache ◽  
Karen Chi ◽  
Yong Chen ◽  
Paola Goatin ◽  
Ke Han ◽  
...  

This paper uses empirical traffic data collected from three locations in Europe and the US to reveal a three-phase fundamental diagram with two phases located in the uncongested regime. Model-based clustering, hypothesis testing and regression analyses are applied to the speed–flow–occupancy relationship represented in the three-dimensional space to rigorously validate the three phases and identify their gaps. The finding is consistent across the aforementioned different geographical locations. Accordingly, we propose a three-phase macroscopic traffic flow model and a characterization of solutions to the Riemann problems. This work identifies critical structures in the fundamental diagram that are typically ignored in first- and higher-order models and could significantly impact travel time estimation on highways.


Author(s):  
Rahid Zaman ◽  
Yujiang Xiang ◽  
Jazmin Cruz ◽  
James Yang

In this study, the three-dimensional (3D) asymmetric maximum weight lifting is predicted using an inverse-dynamics-based optimization method considering dynamic joint torque limits. The dynamic joint torque limits are functions of joint angles and angular velocities, and imposed on the hip, knee, ankle, wrist, elbow, shoulder, and lumbar spine joints. The 3D model has 40 degrees of freedom (DOFs) including 34 physical revolute joints and 6 global joints. A multi-objective optimization (MOO) problem is solved by simultaneously maximizing box weight and minimizing the sum of joint torque squares. A total of 12 male subjects were recruited to conduct maximum weight box lifting using squat-lifting strategy. Finally, the predicted lifting motion, ground reaction forces, and maximum lifting weight are validated with the experimental data. The prediction results agree well with the experimental data and the model’s predictive capability is demonstrated. This is the first study that uses MOO to predict maximum lifting weight and 3D asymmetric lifting motion while considering dynamic joint torque limits. The proposed method has the potential to prevent individuals’ risk of injury for lifting.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1211
Author(s):  
Maja Vončina ◽  
Aleš Nagode ◽  
Jožef Medved ◽  
Irena Paulin ◽  
Borut Žužek ◽  
...  

When extruding the casted rods from EN AW 2011 aluminium alloys, not only their homogenized structure, but also their extrudable properties were significantly influenced by the hardness of the alloy. In this study, the object of investigations was the EN AW 2011 aluminium alloy, and the effect of homogenisation time on hardness was investigated. First, homogenisation was carried out at 520 °C for different times, imitating industrial conditions. After homogenisation, the samples were analysed by hardness measurements and further characterised by microscopy and image analysis to verify the influence of homogenisation on the resulting microstructural constituents. In addition, non-equilibrium solidification was simulated using the program Thermo-Calc and phase formation during solidification was investigated. The homogenisation process enabled more rounded shape of the Al2Cu eutectic phase, equilibrium formation of the phases, and the precipitation in the matrix, leading to a significant increase in the hardness of the EN AW 2011 aluminium alloy. The experimental data revealed a suitable homogenisation time of 4–6 h at a temperature of 520 °C, enabling optimal extrusion properties.


2020 ◽  
Vol 21 (20) ◽  
pp. 7702 ◽  
Author(s):  
Sofya I. Scherbinina ◽  
Philip V. Toukach

Analysis and systematization of accumulated data on carbohydrate structural diversity is a subject of great interest for structural glycobiology. Despite being a challenging task, development of computational methods for efficient treatment and management of spatial (3D) structural features of carbohydrates breaks new ground in modern glycoscience. This review is dedicated to approaches of chemo- and glyco-informatics towards 3D structural data generation, deposition and processing in regard to carbohydrates and their derivatives. Databases, molecular modeling and experimental data validation services, and structure visualization facilities developed for last five years are reviewed.


Author(s):  
Stephan Uhkoetter ◽  
Stefan aus der Wiesche ◽  
Michael Kursch ◽  
Christian Beck

The traditional method for hydrodynamic journal bearing analysis usually applies the lubrication theory based on the Reynolds equation and suitable empirical modifications to cover turbulence, heat transfer, and cavitation. In cases of complex bearing geometries for steam and heavy-duty gas turbines this approach has its obvious restrictions in regard to detail flow recirculation, mixing, mass balance, and filling level phenomena. These limitations could be circumvented by applying a computational fluid dynamics (CFD) approach resting closer to the fundamental physical laws. The present contribution reports about the state of the art of such a fully three-dimensional multiphase-flow CFD approach including cavitation and air entrainment for high-speed turbo-machinery journal bearings. It has been developed and validated using experimental data. Due to the high ambient shear rates in bearings, the multiphase-flow model for journal bearings requires substantial modifications in comparison to common two-phase flow simulations. Based on experimental data, it is found, that particular cavitation phenomena are essential for the understanding of steam and heavy-duty type gas turbine journal bearings.


1984 ◽  
Vol 62 (3) ◽  
pp. 596-600 ◽  
Author(s):  
R. G. Barradas ◽  
D. S. Nadezhdin

The cathodic reduction of the lead monoxide layer formed on lead in 30% aqueous H2SO4 under anodic oxidation at 0.6 V (vs. Hg/HgSO4 reference electrode) was investigated by linear sweep voltammetry, potential step and admittance measurements. The experimental data were analyzed respectively in terms of thin-layer electrochemistry, electrocrystallisation, and changes of resistance of the PbO layer under reduction. The results seem to be best interpreted from the theory of three-dimensional electrocrystallisation as PbO is reduced to Pb. At sub-zero temperatures the PbO peak observed on our voltammograms and potentiostatic current time transients reveals the splitting of the curves into two peaks, which may be a result of reduction of the same material but of different phases, namely, orthorhombic and tetragonal PbO.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


1962 ◽  
Vol 99 (6) ◽  
pp. 558-569 ◽  
Author(s):  
Peter J. Wyllie

AbstractBowen's petrogenetic grid is a PT projection containing univariant curves for decarbonation, dehydration, and solid-solid reactions, with vapour pressure (Pf) equal to total pressure (Ps). Analysis of experimental data in the system MgO–CO2–H2O leads to an expansion of this grid. Three of the important variables in metamorphism when Pf = Ps are P, T, and variation of the pore fluid composition between H2O and CO2. These can be illustrated in a three-dimensional petrogenetic model; one face is a PT plane for reactions occurring with pure H2O, and the opposite face is a similar plane for reactions with pure CO2; these are separated by an axis for pore fluid composition varying between H2O and CO2. Superposition of the PT faces of the model provides the petrogenetic grid. The reactions within the model are represented by divariant surfaces, which may meet along univariant lines. For dissociation reactions, the surfaces curve towards lower temperatures as the proportion of non-reacting volatile increases, and solid-solid reaction surfaces are parallel to the vapour composition axis and perpendicular to the PT axes. The relative temperatures of reactions and the lines of intersections of the surfaces can be illustrated in isobaric sections. Isobaric sections are used to illustrate reactions proceeding at constant pressure with (1) pore fluid composition remaining constant during the reaction, with temperature increasing (2) pore fluid composition changing during the reaction, with temperature increasing, and (3) pore fluid changing composition at constant temperature. The petrogenetic model provides a convenient framework for a wide range of experimental data.


2004 ◽  
Vol 18 (09) ◽  
pp. 1351-1368
Author(s):  
ANDREI DOLOCAN ◽  
VOICU OCTAVIAN DOLOCAN ◽  
VOICU DOLOCAN

Using a new Hamiltonian of interaction we have calculated the cohesive energy in three-dimensional structures. We have found the news dependences of this energy on the distance between the atoms. The obtained results are in a good agreement with experimental data in ionic, covalent and noble gases crystals. The coupling constant γ between the interacting field and the atoms is somewhat smaller than unity in ionic crystals and is some larger than unity in covalent and noble gases crystals. The formulae found by us are general and may be applied, also, to the other types of interactions, for example, gravitational interactions.


Sign in / Sign up

Export Citation Format

Share Document