scholarly journals Investigation of thin films for fabrication of Nb/AlN/NbN tunnel junctions and microstrip lines of NbTiN-SiO2-Al.

2021 ◽  
Vol 13 (4) ◽  
pp. 419-426
Author(s):  
Artem M. Chekushkin ◽  
◽  
Lyudmila V. Filippenko ◽  
Vadim V. Kashin ◽  
Mikhail Yu. Fominskiy ◽  
...  

The surface of thin films of Nb, Al, NbTiN, SiO2, Al2O3 is investigated in this work. These films are necessary for the fabrication of high-sensitive devices of THz range. The fabrication processes of such devices are described briefly. All films were fabricated using a Kurt J. Lesker magnetron sputtering system. The study of the film surface roughness was carried out using a Bruker Ikon atomic force microscope. The surface quality of films is determined not only deposition mode, but plasma etching process also. The best values of the root-mean-square deviation of the surface profile Rq = 2 nm were obtained for the used NbTiN film with a thickness of 325 nm. Thin Al-layers that is used for tunnel barrier formation is studied. It is shown than Al films with a thickness of more than 6 nm are already continuous. The surface roughness of the single-layer and multilayer films has been studied.

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 906
Author(s):  
Chea-Young Lee ◽  
Young-Hee Joo ◽  
Minsoo P. Kim ◽  
Doo-Seung Um ◽  
Chang-Il Kim

Plasma etching processes for multi-atomic oxide thin films have become increasingly important owing to the excellent material properties of such thin films, which can potentially be employed in next-generation displays. To fabricate high-performance and reproducible devices, the etching mechanism and surface properties must be understood. In this study, we investigated the etching characteristics and changes in the surface properties of InGaZnO4 (IGZO) thin films with the addition of O2 gases based on a CF4/Ar high-density-plasma system. A maximum etch rate of 32.7 nm/min for an IGZO thin film was achieved at an O2/CF4/Ar (=20:25:75 sccm) ratio. The etching mechanism was interpreted in detail through plasma analysis via optical emission spectroscopy and surface analysis via X-ray photoelectron microscopy. To determine the performance variation according to the alteration in the surface composition of the IGZO thin films, we investigated the changes in the work function, surface energy, and surface roughness through ultraviolet photoelectron spectroscopy, contact angle measurement, and atomic force microscopy, respectively. After the plasma etching process, the change in work function was up to 280 meV, the thin film surface became slightly hydrophilic, and the surface roughness slightly decreased. This work suggests that plasma etching causes various changes in thin-film surfaces, which affects device performance.


2001 ◽  
Vol 08 (06) ◽  
pp. 689-692
Author(s):  
SHAHZAD NASEEM

Nb thin films have been prepared with e-beam evaporation under UHV conditions, and by RF magnetron sputtering. Al thin films were deposited by resistive heating in the UHV chamber. The preparation of these films and the trilayers of Nb/AlO x /Nb are intended for their use in Josephson junctions. Surface studies of these films are undertaken by using an atomic force microscope in the noncontact mode. These studies have revealed that the sputter-deposited Nb film surface is smoother than that of the UHV e-beam evaporated with R rms values of 3.5 and 4.0 nm respectively. Al thin films have a very smooth surface, with an R rms value of only 0.9 nm. Consequently, UHV-evaporated Nb thin films deposited on top of Al thin films are smoother, with a surface roughness of 1.8 nm.


10.14311/1767 ◽  
2013 ◽  
Vol 53 (2) ◽  
Author(s):  
Jan Píchal ◽  
Julia Klenko

Thin film technology has become pervasive in many applications in recent years, but it remains difficult to select the best deposition technique. A further consideration is that, due to ecological demands, we are forced to search for environmentally benign methods. One such method might be the application of cold plasmas, and there has already been a rapid growth in studies of cold plasma techniques. Plasma technologies operating at atmospheric pressure have been attracting increasing attention. The easiest way to obtain low temperature plasma at atmospheric pressure seems to be through atmospheric dielectric barrier discharge (ADBD). We used the plasma enhanced chemical vapour deposition (PECVD) method applying atmospheric dielectric barrier discharge (ADBD) plasmafor TiOx thin films deposition, employing titanium isopropoxide (TTIP) and oxygen as reactants, and argon as a working gas. ADBD was operated in filamentary mode. The films were deposited on glass. We studied the quality of the deposited TiOx thin film surface for various precursor gas inlet positions in the ADBD reactor. The best thin films quality was achieved when the precursor gases were brought close to the substrate surface directly through the inlet placed in one of the electrodes.High hydrophilicity of the samples was proved by contact angle tests (CA). The film morphology was tested by atomic force microscopy (AFM). The thickness of the thin films varied in the range of (80 ÷ 210) nm in dependence on the composition of the reactor atmosphere. XPS analyses indicate that composition of the films is more like the composition of TiOxCy.


1997 ◽  
Vol 12 (8) ◽  
pp. 1942-1945 ◽  
Author(s):  
H. J. Gao ◽  
H. X. Zhang ◽  
Z. Q. Xue ◽  
S. J. Pang

Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) investigation of tetracyanoquinodimethane (TCNQ) and the related C60-TCNQ thin films is presented. Periodic molecular chains of the TCNQ on highly oriented pyrolytic graphite (HOPG) substrates were imaged, which demonstrated that the crystalline (001) plane was parallel to the substrate. For the C60-TCNQ thin films, we found that there were grains on the film surface. STM images within the grain revealed that the well-ordered rows and terraces, and the parallel rows in different grains were generally not in the same orientation. Moreover, the grain boundary was also observed. In addition, AFM was employed to modify the organic TCNQ film surface for the application of this type of materials to information recording and storage at the nanometer scale. The nanometer holes were successfully created on the TCNQ thin film by the AFM.


2015 ◽  
Vol 4 (3) ◽  
Author(s):  
Radu Malureanu ◽  
Andrei Lavrinenko

AbstractUltra-thin films with low surface roughness that support surface plasmon-polaritons in the infra-red and visible ranges are needed in order to improve the performance of devices based on the manipulation of plasmon propagation. Increasing amount of efforts is made in order not only to improve the quality of the deposited layers but also to diminish their thickness and to find new materials that could be used in this field. In this review, we consider various thin films used in the field of plasmonics and metamaterials in the visible and IR range. We focus our presentation on technological issues of their deposition and reported characterization of film plasmonic performance.


2015 ◽  
Vol 742 ◽  
pp. 773-777
Author(s):  
Qun Feng Yang ◽  
Jian Yi Zheng ◽  
Jun Qing Wang ◽  
Jun Hui Lin ◽  
Xue Nan Zhao ◽  
...  

The purpose of this work is to study the mechanical characteristics of the silicon nitride(SiNx) thin films prepared by PECVD technique, some researches as follows were carried out. First, the SiNx thin films were deposited on the two different substrates. Then, the atomic force microscope (AFM) was adopted to test the surface quality of the SiNxfilms, and the scanning electron microscope (SEM) was used to test the section morphology of the SiNxthin films. Finally, the rotating beam structures was applied to measure the residual stress in the SiNx films. The SiNxthin films with low stress can be fabricated through PECVD, in which the surface roughness values(Ra) are 1.261 nm and 2.383nm, and the residual stress is 43.5 kPa. Therefore, the SiNxthin films deposited by PECVD are suitable for the preparation of device dielectric films in MEMS.


Author(s):  
A. Paradecka ◽  
K. Lukaszkowicz ◽  
A. Kříž ◽  
R. Potempa

Purpose: The purpose of this article is to characterize and compare the structure, mechanical and tribological properties of low friction DLC and TiC thin films deposited on the austenitic steel X6CrNiMoTi17-12-2 substrate. Design/methodology/approach: In the research, the samples of the DLC and TiC thin films with transition hard AlCrN interlayer deposited by magnetron sputtering and PACVD technology respectively were used. Observations of topography were made using a scanning electron microscope (SEM), and the atomic force microscope (AFM). The structure of samples was performed using a Raman microscope. The microhardness tests of thin films were made by Oliver & Phare method. Findings: Studies confirmed that the combination of research SEM and AFM provide crucial information on the structure and topography of the samples. It was possible to obtain information about the topography parameters and allow for the assessment of morphology and quality of the tested coatings. Study of the structure using Raman spectroscopy revealed the band corresponding to the DLC and TiC thin films. Practical implications: The current application areas for low friction thin films are constantly growing, and the intensive development of techniques requires the use of new technologies what leads to the production of the specific surface layer and a thorough examination. Originality/value: Growing area of low friction coatings with specific properties requires the use of specialized tools aimed at assessing the topography and structures which are responsible for tribological properties.


2018 ◽  
Vol 12 (6) ◽  
pp. 921-929 ◽  
Author(s):  
Masato Okada ◽  
Makoto Shinke ◽  
Masaaki Otsu ◽  
Takuya Miura ◽  
Kuniaki Dohda ◽  
...  

Burnishing characteristics of a newly developed roller burnishing method were developed. The developed method can effectively control the sliding direction between the roller and a cylindrical workpiece by inclining the roller axis with respect to the workpiece axis. The outer surface of a round aluminum alloy bar was targeted. The influence of burnishing conditions on burnished-surface quality was investigated, and surface quality was evaluated based primarily on the surface roughness, surface profile, and external appearance. As observed, the burnished-surface quality was strongly influenced by the pressing force, roller-inclination angle, and number of tool passes. A superior surface quality could be realized by increasing the number of tool passes.


2015 ◽  
Vol 30 (S1) ◽  
pp. S16-S24 ◽  
Author(s):  
Dieter Jehnichen ◽  
Doris Pospiech ◽  
Peter Friedel ◽  
Guping He ◽  
Alessandro Sepe ◽  
...  

Diblock copolymers (BCPs) show phase separation on mesoscopic length scales and form ordered morphologies in both bulk and thin films, the latter resulting in nanostructured surfaces. Morphologies in thin films are strongly influenced by film parameters, the ratio of film thickness and bulk domain spacing. Laterally structured polymer surfaces may serve as templates for controlled assembly of nanoparticles (NPs). We investigated the BCP of poly(n-pentyl methacrylate) and poly(methyl methacrylate) which show bulk morphologies of stacked lamellae or hexagonally packed cylinders. Thin films were investigated by atomic force microscopy and grazing-incidence small-angle X-ray scattering. For film thicknesses f well below dbulk, standing cylinder morphologies were observed in appropriate molar ratios, while film thicknesses around and larger than dbulk resulted in cylinders arranged parallel to surface. To alter and/or improve the morphology also in presence of different NPs (e.g., silica, gold), solvent vapour annealing (SVA) was applied. The BCP morphology usually remains unchanged but periodicities change depending on type and amount of incorporated NPs. It was found that silica clusters enlarge lateral distances of cylinders, whereas Au NPs reduce it. The effect of SVA is weak. The quality of morphology is slightly improved by SVA and lateral distances remain constant or are slightly reduced.


Sign in / Sign up

Export Citation Format

Share Document