Automotive Approach to Obtaining Quality Integrated Circuits

1985 ◽  
Vol 28 (6) ◽  
pp. 24-26
Author(s):  
Michael Bustamante ◽  
Garrett Hicks

This paper describes the methods used by Chrysler Huntsville Automotive Electronics to obtain the quality, durability and reliability characteristics needed to fulfill the 193,200-km (120,000 mile) field performance requirements for Chrysler engine controls, radios and other electronic feature products. The paper will describe a case history, including the steps taken by both Chrysler Huntsville Automotive Electronics plant and one of their integrated circuit suppliers to attain certain quality levels.

Author(s):  
Richard R. Grzybowski ◽  
Ben Gingrich

Advances in silicon-on-insulator (SOI) integrated circuit technology and the steady development of wider band gap semiconductors like silicon carbide are enabling the practical deployment of high temperature electronics. High temperature civilian and military electronics applications include distributed controls for aircraft, automotive electronics, electric vehicles and instrumentation for geothermal wells, oil well logging and nuclear reactors. While integrated circuits are key to the realization of complete high temperature electronic systems, passive components including resistors, capacitors, magnetics and crystals are also required. This paper will present characterization data obtained from a number of silicon high temperature integrated evaluated over a range of elevated temperatures and aged at a selected high temperature. This paper will also present a representative cross section of high temperature passive component characterization data for device types needed by many applications. Device types represented will include both small signal and power resistors and capacitors. Specific problems encountered with the employment of these devices in harsh environments will be discussed for each family of components. The goal in presenting this information is to demonstrate the viability of a significant number of commercially available silicon integrated circuits and passive components that operate at elevated temperatures as well as to encourage component suppliers to continue to optimize a selection of their product offerings for operation at higher temperatures. In addition, systems designers will be encouraged to view this information with an eye toward the conception and implementation of reliable and affordable high temperature systems.


In order to design the complex structure, devices , systems of electronic products under the level micrometers the micro-electromechanical and micromachining system (MEMS) are mostly preferred. Micro machining techniques are initially lent directly from electronic integrated circuit (IC) industry. But now there were many techniques proposed with wide variety of transduction directly. Ample variety of MEMS transduction process can be used to convert real-world signal from one to another form. The process of conversion can be can be enabled by combining different sensors, actuators and Microsystems. Due to the process of partial consistency and a growing technology, the complex designs of sophisticated MEMS are produced. The combination of integrated circuits with MEMS can improve performance, but at the rate of development cost, complexity and time. With the fact & fast development and growth in the area of automotive electronics, IoT, cloud computing, artificial intelligence and machine learning technologies prompted us to have higher potential market to make the successful products which can impact the social and economic growth. In addition to this, MEMS are well appropriate for automation, medical electronics, and agriculture and space exploration. Thus will play an important and major role in future mission both in private and public sectors. The major problem in India and other developing countries are safety and security. This paper describes the optimal solution & design methodology to control the user end application using MEMS senso., where the controlling of the machineries can be done by MEMS sensor to control communicate via wireless communication


1999 ◽  
Vol 121 (4) ◽  
pp. 622-628 ◽  
Author(s):  
R. R. Grzybowski ◽  
B. Gingrich

Advances in silicon-on-insulator (SOI) integrated circuit technology and the steady development of wider band gap semiconductors like silicon carbide are enabling the practical deployment of high temperature electronics. High temperature civilian and military electronics applications include distributed controls for aircraft, automotive electronics, electric vehicles and instrumentation for geothermal wells, oil well logging, and nuclear reactors. While integrated circuits are key to the realization of complete high temperature electronic systems, passive components including resistors, capacitors, magnetics, and crystals are also required. This paper will present characterization data obtained from a number of silicon high temperature integrated evaluated over a range of elevated temperatures and aged at a selected high temperature. This paper will also present a representative cross section of high temperature passive component characterization data for device types needed by many applications. Device types represented will include both small signal and power resistors and capacitors. Specific problems encountered with the employment of these devices in harsh environments will be discussed for each family of components. The goal in presenting this information is to demonstrate the viability of a significant number of commercially available silicon integrated circuits and passive components that operate at elevated temperatures as well as to encourage component suppliers to continue to optimize a selection of their product offerings for operation at higher temperatures. In addition, systems designers will be encouraged to view this information with an eye towards the conception and implementation of reliable and affordable high temperature systems.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
N. David Theodore ◽  
Donald Y.C Lie ◽  
J. H. Song ◽  
Peter Crozier

SiGe is being extensively investigated for use in heterojunction bipolar-transistors (HBT) and high-speed integrated circuits. The material offers adjustable bandgaps, improved carrier mobilities over Si homostructures, and compatibility with Si-based integrated-circuit manufacturing. SiGe HBT performance can be improved by increasing the base-doping or by widening the base link-region by ion implantation. A problem that arises however is that implantation can enhance strain-relaxation of SiGe/Si.Furthermore, once misfit or threading dislocations result, the defects can give rise to recombination-generation in depletion regions of semiconductor devices. It is of relevance therefore to study the damage and anneal behavior of implanted SiGe layers. The present study investigates the microstructural behavior of phosphorus implanted pseudomorphic metastable Si0.88Ge0.12 films on silicon, exposed to various anneals.Metastable pseudomorphic Si0.88Ge0.12 films were grown ~265 nm thick on a silicon wafer by molecular-beam epitaxy. Pieces of this wafer were then implanted at room temperature with 100 keV phosphorus ions to a dose of 1.5×1015 cm-2.


1997 ◽  
Vol 473 ◽  
Author(s):  
David R. Clarke

ABSTRACTAs in other engineered structures, fracture occasionally occurs in integrated microelectronic circuits. Fracture can take a number of forms including voiding of metallic interconnect lines, decohesion of interfaces, and stress-induced microcracking of thin films. The characteristic feature that distinguishes such fracture phenomena from similar behaviors in other engineered structures is the length scales involved, typically micron and sub-micron. This length scale necessitates new techniques for measuring mechanical and fracture properties. In this work, we describe non-contact optical techniques for probing strains and a microscopic “decohesion” test for measuring interface fracture resistance in integrated circuits.


2000 ◽  
Vol 631 ◽  
Author(s):  
J. G. Fleming ◽  
E. Chow ◽  
S.-Y. Lin

ABSTRACTResonance Tunneling Diodes (RTDs) are devices that can demonstrate very highspeed operation. Typically they have been fabricated using epitaxial techniques and materials not consistent with standard commercial integrated circuits. We report here the first demonstration of SiO2-Si-SiO2 RTDs. These new structures were fabricated using novel combinations of silicon integrated circuit processes.


Author(s):  
Mark Kimball

Abstract This article presents a novel tool designed to allow circuit node measurements in a radio frequency (RF) integrated circuit. The discussion covers RF circuit problems; provides details on the Radio Probe design, which achieves an input impedance of 50Kohms and an overall attenuation factor of 0 dB; and describes signal to noise issues in the output signal, along with their improvement techniques. This cost-effective solution incorporates features that make it well suited to the task of differential measurement of circuit nodes within an RF IC. The Radio Probe concept offers a number of advantages compared to active probes. It is a single frequency measurement tool, so it complements, rather than replaces, active probes.


Author(s):  
Carl Nail

Abstract To overcome the obstacles in preparing high-precision cross-sections of 'blind' bond wires in integrated circuits, this article proposes a different technique that generates reliable, repeatable cross-sections of bond wires across most or all of their lengths, allowing unencumbered and relatively artifact-free analysis of a given bond wire. The basic method for cross-sectioning a 'blind' bond wire involves radiographic analysis of the sample and metallographic preparation of the sample to the plane of interest. This is followed by tracking the exact location of the plane on the original radiograph using a stereomicroscope and finally darkfield imaging in which the wire is clearly visible with good resolution.


Author(s):  
Nicholas Randall ◽  
Rahul Premachandran Nair

Abstract With the growing complexity of integrated circuits (IC) comes the issue of quality control during the manufacturing process. In order to avoid late realization of design flaws which could be very expensive, the characterization of the mechanical properties of the IC components needs to be carried out in a more efficient and standardized manner. The effects of changes in the manufacturing process and materials used on the functioning and reliability of the final device also need to be addressed. Initial work on accurately determining several key mechanical properties of bonding pads, solder bumps and coatings using a combination of different methods and equipment has been summarized.


Sign in / Sign up

Export Citation Format

Share Document