scholarly journals Assessment of metal-bonded super-hard grinding wheels performances on the basis of stereometric parameters of cutting surface of grinding wheel

Mechanik ◽  
2015 ◽  
pp. 711/117-711/121
Author(s):  
Andrzej Gołąbczak ◽  
Marcin Gołąbczak ◽  
Robert Święcik ◽  
Marcin Galant ◽  
Dariusz Kaczmarek
Author(s):  
A Gołabczak ◽  
J Kozak

In this paper the development of an effective hybrid electrodischarge and electrochemical profiling/dressing system is depicted. To realize the profiling of superhard grinding wheels, an innovative segmental tool electrode has been designed and tested. The principle of operating this system, the case for its realization, mathematical modelling, and experimental results concerning dressing of grinding wheels is discussed. The results of the investigation demonstrate the usefulness of a hybrid system for the profiling of superhard grinding wheels and the shaping macro- and micro-geometry of the cutting surface grinding wheel (CSGW).


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1375
Author(s):  
Marcin Gołąbczak ◽  
Andrzej Gołąbczak ◽  
Barbara Tomczyk

This article introduces significant cognitive and usable values in the field of abrasive technology especially in the development of new methods of the electrochemical dressing of superhard grinding wheels with metal bonds. Cognitive values mainly concern the elaboration of the theoretical backgrounds of the electrochemical digestion of compounds of grinding wheel metal bond and gumming up products of the cutting surface of grinding wheel (CSGW). Cognitive values also deal with determining the mathematical relationships describing the influence of technological conditions of dressing on shaping of cutting abilities of superhard grinding wheels. On the other hand, the useful values refer to the industry implementation of the elaborated method and equipment for the electrochemical dressing of suparhard grinding wheels using alternating current (ECDGW-AC). The cost of the device for the realization of this process is low and can be applied in the production conditions. The novel achievements presented in the article are: the elaboration of a new method and equipment for electrochemical dressing of superhard grinding wheels (ECDGW-AC), the selection of electrolytes of low concentration of chemical compounds, tests concerning the digestion of grinding wheel metal bond compounds and gumming up products of CSGW using X-ray analysis, as well as the determination of chemical reactions taking place during elaborated new dressing process, the elaboration of mathematical relationships describing influence of technological conditions of this process on dressing speed and shaping of cutting abilities of superhard grinding wheels, and the performance of technological tests of dressing of superhard grinding wheels using ECDGW-AC method. The elaborated method can be used in ambient temperature and does not cause thermal damages of abrasive grains of cutting surface of grinding wheel and is useful not only for dressing super hard grinding wheels but also for correcting their geometrical deviations.


2016 ◽  
Vol 686 ◽  
pp. 125-130 ◽  
Author(s):  
Miroslav Neslušan ◽  
Jitka Baďurová ◽  
Anna Mičietová ◽  
Maria Čiliková

This paper deals with cutting ability of progressive Norton Quantum grinding wheel during grinding roll bearing steel 100Cr6 of hardness 61 HRC. Cutting ability of this wheel is compared with conventional grinding wheel and based on measurement of grinding forces as well as surface roughness. Results of experiments show that Norton Quantum grinding wheels are capable of long term grinding cycles at high removal rates without unacceptable occurrence of grinding chatter and surface burn whereas application of conventional wheel can produce excessive vibration and remarkable temper colouring of ground surface. Moreover, while Norton Quantum grinding wheel gives nearly constant grinding forces and surface roughness within ground length at higher removal rates, conventional grinding wheel (as that reported in this study) does not.


2010 ◽  
Vol 126-128 ◽  
pp. 690-695
Author(s):  
David Lee Butler

Surface measurement using three-dimensional stylus instruments is a relatively new technique that offers numerous advantages over more traditional profilometry methods. The information generated is, unlike profile measurement, less subjective and more statistical providing additional insight into the surface structure. One application of surface measurement that has encountered problems when using the profilometry method is that of grinding wheel characterisation. The wheel surface texture (topography) and the conditions under which it is generated have a profound effect upon the grinding performance as characterised by the grinding forces, power consumption, temperature, and surface integrity of components. A detailed knowledge of the nature of the topography of the grinding wheel would provide further insight into surface interactions between the wheel and workpiece as well as enabling improved control of the grinding process in general. In this paper four diamond grinding wheels of 91 and 181 micron grit size were subjected to differing dressing conditions to produce varying final wheel topographies. Three-dimensional surface measurement techniques were employed to quantitatively characterise the topographic change and provide an aerial estimation of the number of cutting grains. The results demonstrate that the techniques can distinguish between a worn and dressed wheel. In addition, the parametric values generated from the various surfaces can aid the user in determining when re-dressing is required.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Xining Zhang ◽  
Xu Liu ◽  
Huan Zhao

Grinding is a vital method in machining techniques and an effective way to process materials such as hardened steels and silicon wafers. However, as the running time increases, the unbalance of grinding wheels produce a severe vibration and noise of grinding machines because of the uneven shedding of abrasive particles and the uneven adsorption of coolant, which has a severe and direct impact on the accuracy and quality of parts. Online balancing is an important and necessary technique to reduce the unbalance causing by these factors and adjust the time-varying balance condition of the grinding wheel. A new active online balancing method using liquid injection and free dripping is proposed in this paper. The proposed online balancing method possesses a continuous balancing ability and the problem of losing balancing ability for the active online balancing method using liquid injection is solved effectively because some chambers are full of liquid. The residual liquid contained in the balancing chambers is utilized as a compensation mass for reducing rotor unbalance, where the rotor phase is proposed herein as a target for determining the machine unbalance. A new balancing device with a controllable injection and free dripping structure is successfully designed. The relationship between the mass of liquid in the balancing chamber and the centrifugal force produced by liquid is identified. The performance of the proposed method is verified by the balancing experiments and the results of these experiments show that the vibration of unbalance response is reduced by 87.3% at 2700 r/min.


2008 ◽  
Vol 389-390 ◽  
pp. 36-41
Author(s):  
Feng Wei Huo ◽  
Dong Ming Guo ◽  
Ren Ke Kang ◽  
Zhu Ji Jin

A 3D profiler based on scanning white light interferometry with a lateral sampling interval of 0.11μm was introduced to measure the surface topography of a #3000 diamond grinding wheel, and a large sampling area could be achieved by its stitching capability without compromising its lateral or vertical resolution. The protrusion height distribution of diamond grains and the static effective grain density of the grinding wheel were derived, and the wheel chatter and the deformation of the wheel were analyzed as well. The study shows that the grain protrusion height obeys an approximate normal distribution, the static effective grain density is much lower than the theoretical density, and only a small number of diamond grains are effective in the grinding process with fine diamond grinding wheel. There exists waviness on the grinding wheel surface parallel with the wheel cutting direction. The cutting surface of the grinding wheel is not flat but umbilicate, which indicates that the elastic deformation at the wheel edges is much larger than in the center region.


Author(s):  
Oleksandr Lytvyn ◽  
Kalchenko Dmytro Kalchenko

Urgency of the research. In machine tools, automotive, agricultural engineering, manufacturing, where it is necessary to ensure high accuracy of surfaces of parts with different diameters of faces, it is required to adhere to high requirements for the quality of geometric sizes, roughness and accuracy of molding. Target setting. Grinding of end surfaces of parts with different diameters of faces, is carried out on two-sided end-grinding machines. The specific gravity of grinding in the total complexity of mechanical processing is constantly increasing and at the present stage it is about 30 % in the machine tool industry, in the automotive industry more than 38% of the total complexity of processing. Actual scientific researches and issues analysis. On the two-sided end-grinding machines of the Saturn company (Germany) the processing of round ends of parts is done with a circular feed to the processing area. Abrasive wheels are used without calibrating plots, which requires a lot of processing to obtain the required precision, which reduces the productivity of grinding. The disadvantage of the method is that the processing of parts with different face diameters is not considered. Uninvestigated parts of general matters defining. It is necessary to improve the processing efficiency of parts by developing the methods of two-sided polishing of the ends of pushers with different diameters oriented grinding wheels with and with-out calibrating sections, and also the rotation or without rotation of the workpiece on the calibration section, at least one revo-lution. The research objective. Improving the accuracy of finishing the end surfaces of parts of various diameters with grinding wheels, is achieved by the fact that the shaping of the ends of the smaller diameter is performed by the maximum diameter of the flat end of one circle, and the shaping of the end face of a larger diameter – the calibration section of the second circle, the length of which is equal to the diameter of the larger end and filled with diamond pencil, which moves along a radius, which coincides with the radius of the location of the axes of the parts in the feed drum. The statement of basic materials. In order to ensure the processing of parts in one pass and the necessary precision of processing, in large-scale and mass production, a grinding method oriented circles with calibrated sections with one-sided arrangement of ends of one diameter is used. The calibration sections are then made of different lengths, depending on the diameter, respectively, larger and smaller. Conclusions. The universal method of practical application of model of accuracy of shaping of ends of parts of different diameters, oriented grinding circles with and without calibration plots has been suggested. The presented method simplifies the grinding of the grinding wheel. It does not require special editing and allows to use regular editing.


2006 ◽  
Vol 304-305 ◽  
pp. 29-32 ◽  
Author(s):  
Hang Gao ◽  
Y.G. Zheng ◽  
W.G. Liu ◽  
Jian Hui Li

Manufacturing of vitrified bond CBN wheels for internal precision grinding of the air-conditioner compressor piston hole is still big challenge to all of the domestic manufacturers. Recently, by choosing pre-melting mixed CBN abrasives and a proper sintering process, a cost-effective method was conceived to produce grinding wheels of comparative quality. The grinding performance of wheels was evaluated with a series of internal precision grinding of compressor piston hole. Experimental results show that the vitrified bond CBN grinding wheel produced by this method has better grinding performance, and can be substitute to the same type of grinding wheels imported. But the manufacturing cost is only 60% of the wheel imported according to estimation.


2021 ◽  
pp. 67-70
Author(s):  

The effect of a solid lubricant on the wear of cubic boron nitride grinding wheels on a ceramic bond of different hardness and grain size in the processing of high-speed steel is investigated. The dependences of the change in the wear of cubic boron nitride on the parameters of the processing mode are determined. An automated calculation system is proposed to control the consumption of cubic boron nitride grinding wheels in production conditions. Keywords: solid lubricant, grinding, high speed steel, cubic boron nitride grinding wheel, consumption, wear, grinding mode. [email protected]


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 115 ◽  
Author(s):  
Wojciech Kapłonek ◽  
Krzysztof Nadolny ◽  
Krzysztof Rokosz ◽  
Jocelyne Marciano ◽  
Mozammel Mia ◽  
...  

The development of modern jet engines would not be possible without dynamically developed nickel–chromium-based superalloys, such as INCONEL® The effective abrasive machining of above materials brings with it many problems and challenges, such as intensive clogging of the grinding wheel active surface (GWAS). This extremely unfavorable effect causes a reduction in the cutting ability of the abrasive tool as well as increase to grinding forces and friction in the whole process. The authors of this work demonstrate that introduction of a synthetic organosilicon polymer-based impregnating substance to the GWAS can significantly improve the effects of carrying out the abrasive process of hard-to-cut materials. Experimental studies were carried out on a set of a silicon-treated small-sized sol–gel alumina 1-35×10×10-SG/F46G10VTO grinding wheels. The set contained abrasive tools after the internal cylindrical grinding process of INCONEL® alloy 600 rings and reference abrasive tools. The condition of the GWAS after the impregnation process was studied, including imaging and measurements of its microgeometry using confocal laser scanning microscopy (CLSM), microanalysis of its elemental distribution using energy dispersive X-ray fluorescence (EDXRF), and the influence of impregnation process on the grinding temperature using infrared thermography (IRT). The obtained results confirmed the correctness of introduction of the impregnating substance into the grinding wheel structure, and it was possible to obtain an abrasive tool with a recommended characteristic. The main favorable features of treated grinding wheel concerning the reduction of adhesion between the GWAS and grinding process products (limitation of the clogging phenomenon) as well as reduction of friction in the grinding process, which has a positive effect on the thermal conditions in the grinding zone.


Sign in / Sign up

Export Citation Format

Share Document