scholarly journals Cytotoxicity and Elemental Release of Dental Acrylic Resin Modified with Silver and Vanadium Based Antimicrobial Nanomaterial

2021 ◽  
Vol 23 (1) ◽  
pp. 12-17
Author(s):  
Denise Tornavoi De Castro ◽  
Ana Beatriz Vilela Teixeira ◽  
Oswaldo Luiz Alves ◽  
Andréa Cândido dos Reis

AbstractThe acrylic resin used for the prosthesis base accumulates biofilm, causing diseases such as stomatitis. The addition of some nanoparticles promotes antimicrobial action. This study incorporated the nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) to the acrylic resin by two methods and evaluated the cytotoxicity for human gingival fibroblasts (HGF) and the released silver and vanadium ions. The concentrations of 0.5, 1, 2.5, and 5% of AgVO3 was incorporated by vacuum spatulation and polymeric film. The vacuum spatulation was performed for 60 s using the Turbomix equipment, and the polymeric film was obtained from the polymer solubilization in chloroform, the film was subjected to a cryogenic grinding, and the powder obtained was manually mixed at the monomer. HGF cell viability was assessed after 24 hours, 7 and 14 days by the MTT assay. The release of silver (Ag) and vanadium (V) ions were quantified by inductively coupled plasma mass spectrometry after 30 days. Kruskal-Wallis and Dunn’s test were applied (α = 0.05). The HGF viability was inversely proportional to the incubation time. Both incorporation techniques and the negative and positive control groups presented significant statistical differences (p<0.05). The experimental groups presented no statistical difference compared to the negative control (p>0.05), except the vacuum spatulation group with 5% of AgVO3 that showed greater viability than the negative control (p=0.013) in 24 hours. The release of Ag and V ions was proportional to the concentration of AgVO3 The 5% group presented a significant difference compared to the other groups (p<0.05). In conclusion, the acrylic resin with and without the AgVO3 incorporation had a small cytotoxic potential for HGF in 24 hours, with a lower viability in longer contact times; the release of Ag and V ions was proportional to the concentration of AgVO3, not influencing cell viability. Keywords: Acrylic Resins. Cell Survival. Nanotechnology. Ions. ResumoA resina acrílica utilizada para a base da prótese acumula biofilme, causando doenças como a estomatite. A adição de algumas nanopartículas promove ação antimicrobiana. Este estudo incorporou o vanadato de prata nanoestruturado decorado com nanopartículas de prata (AgVO3) à resina acrílica por dois métodos e avaliou a citotoxicidade para fibroblastos gengivais humanos (HGF) e os íons prata e vanádio liberados. As concentrações de 0,5%, 1%, 2,5% e 5% de AgVO3 foram incorporadas por espatulação a vácuo e filme polimérico. A espatulação a vácuo foi realizada por 60 s no equipamento Turbomix, e o filme polimérico foi obtido a partir da solubilização do polímero em clorofórmio, o filme foi submetido a uma moagem criogênica e o pó obtido foi misturado manualmente ao monômero. A viabilidade celular de HGF foi avaliada após 24 horas, 7 e 14 dias pelo ensaio de MTT. A liberação de íons prata (Ag) e vanádio (V) foi quantificada por espectrometria de massa com plasma indutivamente acoplado após 30 dias. Os testes de Kruskal-Wallis e Dunn foram aplicados (α=0,05). A viabilidade de HGF foi inversamente proporcional ao tempo de incubação. As técnicas de incorporação e os grupos controle negativo e positivo apresentaram diferença estatisticamente significante (p<0,05). Os grupos experimentais não apresentaram diferença estatística em relação ao controle negativo (p>0,05), exceto o grupo de espatulação a vácuo com 5% de AgVO3 que apresentou maior viabilidade que o controle negativo (p = 0,013) em 24 horas. A liberação de íons Ag e V foi proporcional à concentração de AgVO3. O grupo 5% apresentou diferença significativa em relação aos demais grupos (p <0,05). Em conclusão, a resina acrílica com e sem a incorporação de AgVO3 apresentou um pequeno potencial citotóxico para o HGF em 24 horas, com menor viabilidade nos tempos de maior contato, e a liberação de íons Ag e V foi proporcional à concentração de AgVO3, não influenciando na viabilidade celular. Palavras-chave: Resinas Acrílicas. Sobrevivência Celular. Nanotecnologia. Íons.

Author(s):  
Aiman M. Bobaker ◽  
Intisar Alakili ◽  
Sukiman B. Sarmani ◽  
Nadhir Al-Ansari ◽  
Zaher Mundher Yaseen

Henna and walnut tree bark are widely used by Libyan women as cosmetics. They may contain lead (Pb), cadmium (Cd) and arsenic (As), which, in turn, pose a high risk to their health. This study aims to determine the levels of Pb, Cd and As in henna and walnut tree bark products sold in Libyan markets. The products were analyzed for their Pb, Cd and As content by using inductively coupled plasma mass spectrometry (ICP-MS) after a microwave acid digestion. The results showed a significant difference between the henna and walnut tree bark samples in terms of their heavy metals content (p < 0.05). The highest heavy metal concentrations were observed in the walnut tree bark samples whereas the lowest was observed in the henna samples. In addition, 60% of the henna and 90% of the walnut tree bark samples contained Pb levels and approximately 80% of the henna and 90% the walnut tree bark samples contained Cd levels, which are much higher than the tolerance limit. However, As concentrations in all the samples were lower. The results indicated that such cosmetics expose consumers to high levels of Pb and Cd and hence, to potential health risks. Thus, studying the sources and effects of heavy metals in such cosmetics is strongly recommended.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Wenfeng Xu ◽  
Shanshan Zhang ◽  
Wenqing Jiang ◽  
Shuo Xu ◽  
Pengfei Jin

Objective. To investigate the influence of gut microbiota on arsenic accumulation of realgar in mice. Methods. Mice were treated with antibiotics to form a mouse model of gut microbial disruption. Antibiotic-treated and normally raised mice were given 15 mg/kg, 150 mg/kg, and 750 mg/kg realgar by gavage and 0.2 mg/kg and 1 mg/kg arsenic solution by subcutaneous injection for 7 days. The concentration of arsenic in mice whole blood was determined by inductively coupled plasma mass spectrometry (ICP-MS). Arsenic accumulation in antibiotic-treated mice and normally raised mice was compared. Results. After exposure to low dose (15 mg/kg) and middle dose (150 mg/kg) of realgar, significantly, more arsenic was accumulated in the whole blood of antibiotic-treated mice compared to normally raised counterparts, which indicated that the disruption of gut microbiota could lead to higher arsenic load of realgar in mice. The homeostasis of gut microbiota was supposed to be disrupted by high dose (750 mg/kg) of realgar because after exposure to high dose of realgar, there was no significant difference in arsenic accumulation between antibiotic-treated and normally raised mice. Furthermore, arsenic solution was administered by subcutaneous injection to mice to investigate the influence of gut microbial differences on arsenic accumulation in addition to the absorption process, and there was no significant difference in arsenic accumulation between mice with these two different statuses of gut microbiota. Conclusions. Gut microbiota disruption could increase arsenic accumulation of realgar in mice.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Giuseppe Giangrosso ◽  
Gaetano Cammilleri ◽  
Andrea Macaluso ◽  
Antonio Vella ◽  
Nicolantonio D’Orazio ◽  
...  

A number of ninety-six hair samples from Sicilian fishermen were examined for total mercury detection by an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method. The mercury levels obtained were compared with mercury levels of 96 hair samples from a control group, in order to assess potential exposure to heavy metals of Sicilian fishermen due to fish consumption and closeness to industrial activities. Furthermore, the mercury levels obtained from hair samples were sorted by sampling area in order to verify the possible risks linked to the different locations. The overall mean concentration in the hair of the population of fishermen was6.45±7.03 μg g−1, with a highest value in a fisherman of Sciacca (16.48 μg g−1). Hair mercury concentration in fishermen group was significantly higher than in control group (p<0.01). There was no significant difference in hair total mercury concentrations between sampling areas (p>0.05). The results of this study indicate a greater risk of exposure to mercury in Sicilian fishermen, in comparison to the control population, due to the high consumption of fish and the close relationship with sources of exposure (ports, dumps, etc.).


2021 ◽  
Vol 12 (1S) ◽  
pp. 150-156
Author(s):  
Wan Marlin Rohalin ◽  
Nadzifah Yaakub

Heavy metal exhibit toxic and persistent characteristics, can enter into the food chains and the ecosystem where they cause adverse impact on the biotic and abiotic components of ecosystem. Heavy metal pollution in Malaysia has become a major health concern for humans. Thus, this study was conducted to determine the level of cadmium (Cd) and nickel (Ni) in the muscle and gill of fishes collected from the Sungai Kuantan and Sungai Riau. Field sampling was conducted between September and December 2017. Five different species of fishes: Barbonymus gonionotus (Lampam Jawa), B. schwanenfeldii( Lampam Sungai), Hampala macrolepidota(Sebarau), Chitala chitala (Belida), and Hemibagrus nemurus(Baung) were digested by using acid digestion method and analysed with Inductively Coupled Plasma-Mass Spectrometry (ICPMS). Concentration of Cd among species were in order of: H. macrolepidota >B.gonionotus> B. schwanenfeldii> C.chitala> H.nemurus, whereas Ni level in fishes were: C. chitala> H. macrolepidota> B. gonionotus> H. nemurus> B. schwanenfeldii. Among all the species, H. macrolepidota from Sungai Kuantan had the highest Cd in both muscle (0.1761±0.0062¬mg/kg) and gills (0.2938±0.0066mg/kg) whereas the highest Ni level in muscle was noted in C. chitala from Sungai Kuantan with (0.1473±0.0755 mg/kg) and in gills of B.gonionotus (0.4544±0.0470mg/kg) from the same river respectively. It was obtained that there was a significant difference (p<0.05) of Cd in muscle between species. Ni concentration in fishes was below the permissible limit stipulated by World Health Organizations WHO (1985) and Food and Agriculture Organizations (2012) but the concentration of Cd was recorded high. However, it was still below the World Health Organization (WHO) 1985 and Malaysian Food Act (MFA) 1983.


2004 ◽  
Vol 91 (3) ◽  
pp. 403-409 ◽  
Author(s):  
Supannee Sripanyakorn ◽  
Ravin Jugdaohsingh ◽  
Hazel Elliott ◽  
Caroline Walker ◽  
Payal Mehta ◽  
...  

Dietary Si, as soluble orthosilicic acid (OSA), may be important for the growth and development of bone and connective tissue. Beer appears to be a major contributor to Si intake, although the Si content of beer and its bioavailability in human subjects have not been well established. Here we investigated the Si content of different beers and then estimated Si absorption from beer in healthy volunteers. The Si content of seventy-six different beers was estimated using inductively coupled plasma optical emission spectrometry and one of the beers, used in the ingestion study, was ultrafiltered to determine OSA content. Next, following the ingestion of 0·6 litres beer (22·5mg Si; 4·6% (v/v) ethanol), serum and urinary Si levels were measured in nine healthy volunteers over a 6h period. A solution of OSA was similarly investigated as a positive control and water and 4·6% ethanol as negative controls. The mean Si level of beer was 19·2 (SD 6·6) mg/l; the median Si level was 18·0mg/l. There was no significant difference in the Si levels of the different beers by geographical origin or type of beer. Serum and urinary Si levels increased considerably following the ingestion of beer or a solution of OSA but not with the ingestion of either 4·6% ethanol or water. The ultrafilterability of Si from beer (about 80%) and its absorption in volunteers (about 55%) was comparable with that of a solution of OSA suggesting that Si in beer is present chiefly in a monomeric form and is readily bioavailable.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5370 ◽  
Author(s):  
Wencan Jiang ◽  
Gongwei Sun ◽  
Wenbin Cui ◽  
Shasha Men ◽  
Miao Jing ◽  
...  

Background: Element-tagged immunoassay coupled with inductively coupled plasma mass spectrometry (ICP-MS) detection has the potential to revolutionize immunoassay analysis for multiplex detection. However, a further study referring to the standard evaluation and clinical sample verification is needed to ensure its reliability for simultaneous analysis in clinical laboratories. Methods: Carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) were chosen for the duplex immunoassay. The performance of the assay was evaluated according to guidelines from the Clinical and Laboratory Standards Institute (CLSI). Moreover, reference intervals (RIs) of CEA and AFP were established. At last, 329 clinical samples were analyzed by the proposed method and results were compared with those obtained with electrochemiluminescent immunoassay (ECLIA) method. Results: The measurement range of the assay was 2–940 ng/mL for CEA and 1.5–1000 ng/mL for AFP, with a detection limit of 0.94 ng/mL and 0.34 ng/mL, respectively. The inter-assay and intra-assay imprecision were all less than 6.58% and 10.62%, respectively. The RI of CEA and AFP was 0–3.84 ng/mL and 0–9.94 ng/mL, respectively. Regarding to clinical sample detection, no significant difference was observed between the proposed duplex assay and the ECLIA method. Conclusions: The ICP-MS-based duplex immunoassay was successfully developed and the analytical performance fully proved clinical applicability. Well, this could be different with other analytes.


Homeopathy ◽  
2018 ◽  
Vol 107 (04) ◽  
pp. 244-263 ◽  
Author(s):  
Martine Goyens ◽  
Etienne Capieaux ◽  
Philippe Devos ◽  
Pierre Dorfman ◽  
Michel Van Wassenhoven

Background Homeopathy is controversial due to its use of very highly diluted medicines (high potencies/dynamisations). Methods We used a multi-technology approach to examine dilutions of two commonly used homeopathic medicines: an insoluble metal, Cuprum metallicum, and a soluble plant tincture, Gelsemium sempervirens, for the presence of nanoparticles (NPs) of original substance. The homeopathic medicines tested were specially prepared, according to the European pharmacopoeia standards. We compared the homeopathic dilutions/dynamisations with simple dilutions and controls. Results Using Mass Spectrometry (Single Particle-Inductively Coupled Plasma-Mass Spectrometry) and Dynamic Light Scattering (DLS) we could not find the expected copper in the 4cH potentisation and could not confirm the results previously obtained by Chikramane et al (2010). For Gelsemium medicines, using sensitive chromatography (HPLC-UV) up to a dilution level of 6 dH (3cH = dilution 10e-6), there was no significant difference in alkaloid content between a simple dilution and a homeopathic potency.For higher potentisations, however, NP tracking analysis findings revealed the presence of particles in all samples (except for pure water). The measurements showed large differences in particle quantities, mean particle sizes and standard deviations of the mean sizes between manufacturing lines of different starting material.There was always more material in potentised medicines than in potentised pure water. Gelsemium yielded the largest quantity of material (36 times more than that from copper at the same potentisation, 30 cH). The shapes and the chemical composition of the material are differentiable between different medicines and controls. Conclusion Potentisation influences specifically the nature of NPs detected. This material demonstrates that the step-by-step process (dynamised or not) does not match with the theoretical expectations in a dilution process. The Avogadro/Loschmidt limit is not relevant at all. It was not possible to reproduce the findings of Chikramane et al (2010) using inductively coupled plasma-mass spectrometry with copper. Copper NPs could not be detected at 4cH and above.


2011 ◽  
Vol 8 (2) ◽  
pp. 127 ◽  
Author(s):  
Daniel Carrizo ◽  
Maria Unger ◽  
Henry Holmstrand ◽  
Per Andersson ◽  
Örjan Gustafsson ◽  
...  

Environmental contextBrominated organic compounds of both natural and anthropogenic origin are commonly found in the environment. Bromine has two stable isotopes and the isotopic composition of brominated compounds may vary depending on production pathways and degradation processes. These variations are a result of isotope fractionation effects, when heavy isotopes react slower than lighter isotopes. We apply compound-specific bromine isotope analysis to industrial brominated organic compounds, and one naturally produced analogue, to test the feasibility of the technique to investigate the source and environmental fate of these compounds. AbstractThe stable bromine isotopic composition (δ81Br) was determined for six industrially synthesised brominated organic compounds (BOCs) and one natural BOC by gas-chromatography multi-collector inductively coupled plasma mass spectrometry (GC-mcICP-MS). The δ81Br compositions of brominated benzenes, phenols (both natural and industrial), anisoles, and naphthalenes were constrained with the standard differential measurement approach using as reference a monobromobenzene sample with an independently determined δ81Br value (–0.39‰ v. Standard Mean Ocean Bromide, SMOB). The δ81Br values for the industrial BOCs ranged from –4.3 to –0.4‰. The average δ81Br value for the natural compound (2,4-dibromophenol) was 0.2 ± 1.6‰ (1 s.d.), and for the identical industrial compound (2,4-dibromophenol) –1.1 ± 0.9‰ (1 s.d.), with a statistically significant difference of ~1.4 (P < 0.05). The δ81Br of four out of six industrial compounds was found to be significantly different from that of the natural sample. These novel results establish the bromine isotopic variability among the industrially produced BOCs in relation to a natural sample.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Michaela Dufka ◽  
Bohumil Dočekal

A diffusive gradient in thin films (DGT) technique was employed in characterization of the particulate matter related to the urban area suffering from heavy traffic. Kinetics of mobilization metals fluxes from the metal-contaminated particulate matter was investigated. To monitor responses of the particulate matter sample, DGT probes of various thickness of diffusion layer were deployed in aqueous model suspensions of the particulate matter for different time periods. Particulate matter samples and exposed DGT resin gels were decomposed in a mixture of nitric and hydrochloric acid in a microwave pressurized PTFE-lined system. Total content of some traffic-related elements (Cd, Co, Cu, Mo, Ni, Pb, Pd, Pt, Rh, Sb, and V) was determined by inductively coupled plasma mass spectrometry. DGT measurements revealed that two metals pools associated with particles could be recognized, which can be characterized as high soluble fraction and almost insoluble fraction. DGT-measured metal fluxes from the labile pool showed significant difference in mobilization and resupply fluxes of individual selected elements, which might reflect the origin of selected metals and their speciation in particulate matter. The DGT technique can be applied as a useful tool for characterization of metals mobilization from the particulate matter.


2018 ◽  
Vol 7 (3.30) ◽  
pp. 15
Author(s):  
Siti Nadzifah Ghazali ◽  
Fazrul Razman ◽  
Mohd Zahari Abdullah

Rainwater samples were collected in Jengka, Pahang Malaysia. Temperature, pH, TDS, EC, Al, Cu, Mn, and Zn were measured. The concentrations of heavy metals (Al, Cu, Mn and Zn) in thirty-eight samples were analysed using inductively coupled plasma-mass spectrometry (ICP-MS). Statistical analysis results indicate that pH, TDS, and EC showed significant differences between wet and dry seasons. However, no significant difference was observed seasonally for heavy metals (HMs). All parameters, except pH, were below the Malaysian Drinking Water Guidelines (MDWG) value and the health risk assessment for HMs indicates the safe levels. Principal component analysis (PCA) suggests that HMs in rainwater in Jengka, Pahang were originated from natural and anthropogenic sources.  


Sign in / Sign up

Export Citation Format

Share Document