scholarly journals The Effect of Adding Waste of Cement "Fly Ash" in some of the Mechanical Properties of NBR Composites

Author(s):  
Saad A. Al-Jebory ◽  
M.H. Al-Maamori

Composite materials consist of merging two materials or more are different in mechanical and physical properties,The aim of research is to study the effect of changing in the rainforcment percentage by fly ash in mechanical Properties ,for composite material consist of NBR rubber rainforced by carbon black (40pphr) and fly ash (0,15,18,20,23,26,30 pphr), which included tensile strength,modulus,elongation, hardness,tear,rasillince,after rainforced NBR rubber with different weight percentage from fly ash and study the effect on above Properties as illustrated in the diagrams

2012 ◽  
pp. 189-198 ◽  
Author(s):  
Jelena Petrovic ◽  
Darko Ljubic ◽  
Marina Stamenovic ◽  
Ivana Dimic ◽  
Slavisa Putic

The significance of composite materials and their applications are mainly due to their good properties. This imposes the need for their recycling, thus extending their lifetime. Once used composite material will be disposed as a waste at the end of it service life. After recycling, this kind of waste can be used as raw materials for the production of same material, which raises their applicability. This indicates a great importance of recycling as a method of the renowal of composite materials. This study represents a contribution to the field of mechanical properties of the recycled composite materials. The tension mechanical properties (tensile strength and modulus of elasticity) of once used and disposed glass-epoxy composite material were compared before and after the recycling. The obtained results from mechanical tests confirmed that the applied recycling method was suitable for glass-epoxy composite materials. In respect to the tensile strength and modulus of elasticity it can be further assessed the possibility of use of recycled glass-epoxy composite materials.


2021 ◽  
Vol 4 ◽  
pp. 121-126
Author(s):  
Rezza Ruzuqi ◽  
Victor Danny Waas

Composite material is a material that has a multi-phase system composed of reinforcing materials and matrix materials. Causes the composite materials to have advantages in various ways such as low density, high mechanical properties, performance comparable to metal, corrosion resistance, and easy to fabricate. In the marine and fisheries industry, composite materials made from fiber reinforcement, especially fiberglass, have proven to be very special and popular in boat construction because they have the advantage of being chemically inert (both applied in general and marine environments), light, strong, easy to print, and price competitiveness. Thus in this study, tensile and impact methods were used to determine the mechanical properties of fiberglass polymer composite materials. Each test is carried out on variations in the amount of fiberglass laminate CSM 300, CSM 450 and WR 600 and variations in weight percentage 99.5% -0.5%, 99% -1%, 98.5% -1, 5%, 98% -2% and 97.5%-2.5% have been used. The results showed that the greater the number of laminates, the greater the impact strength, which was 413,712 MPa, and the more the percentage of hardener, the greater the impact strength, which was 416,487 MPa. The results showed that the more laminate the tensile strength increased, which was 87.054 MPa, and the more the percentage of hardener, the lower the tensile strength, which was 73.921 MPa.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 4171-4199
Author(s):  
Eva Oktoberyani Christy ◽  
Soemarno ◽  
Sumardi Hadi Sumarlan ◽  
Agoes Soehardjono

This study investigated the effects of the pressing temperature on the mechanical and physical properties of binderless bark particleboard made from Gelam bark waste and the improvement of those properties. In addition, the thermal insulation properties of the particleboard were determined. Four different temperatures (140 °C, 160 °C, 180 °C, and 200 °C) were used to make single-layer binderless bark particleboard with a target density of less than or equal to 0.59 g/cm3. Results revealed that the pressing temperature affected the mechanical properties (modulus of rupture, modulus of elasticity, and tensile strength perpendicular to panel surface), which increased as the temperature increased, and the physical properties (thickness swelling and water absorption), which decreased as the temperature increased. Based on the Tukey test, increasing the temperature from 180 to 200 °C did not significantly affect the mechanical or physical properties, except for the tensile strength perpendicular to panel surface. None of the mechanical properties met SNI standard 03-2105-2006 (2006); however, the 12% maximum thickness swelling requirement was met for binderless bark particleboard hot-pressed at 200 °C. Binderless bark particleboard hot-pressed at 200 °C had high water resistance, regardless of its low strength, and a thermal conductivity value of 0.14 W/m∙K.


2012 ◽  
Vol 510-511 ◽  
pp. 532-539 ◽  
Author(s):  
M.A. Bashir ◽  
M. Shahid ◽  
R.A. Alvi ◽  
A.G. Yahya

Natural rubber (polymer designation cis-1-4 polyisoprene, is obtained from the sap ("latex") of several rubber-yielding plants (e.g.,HeveaBrasiliensisandPartheniaargentatum) by coagulation with chemicals, drying, electrical coagulation, and other processes. Foamy or sponge structure of natural rubber (NR) is very useful in aerospace and as auxetic materials (exhibiting negative poisons ratio) for use in application of homeland security.The main aim of this research to estimate the influence of carbon black on mechanical properties, curing and viscosity variation behaviors of the natural rubber based composites. Different amounts of carbon black were used along with other fillers. The influence of carbon black on curing behavior and mechanicalproperties of natural rubber foams was investigated at different feedingratios of the carbon black. The physical properties of the foamed NRs were then measured as a function of carbon blacks content. The mechanical properties of the foamed NRs such as tensile strength,strength at break and modulus,were gradually increased with increasingcarbon black content whereas elongation decreasedat break.


2021 ◽  
Vol 106 ◽  
pp. 26-30
Author(s):  
C. Thirupathaiah ◽  
Sanjeev Reddy K. Hudgikar

The current paper deals about the fabrication of composite material is to combine the desirable attributes of metals and ceramics. Aluminium 6063 used as a base material in combination with the Silicon carbide ,Boron carbide and fly-ash were used as reinforcement material. Our intention is to increased or enhanced properties of pure Aluminium 6063 by addition of Silicon Carbide ,Boron Carbide and fly-ash. The process of fabrication composite material is prepared by using stir casting method. In this paper, addition of Silicon Carbide 1% , Boron Carbide 1% and fly-ash1% with aluminium increasing percentage ratio the mechanical properties of composite material is enhanced, so it is clear that the effect of Silicon Carbide , Boron Carbide and fly-ash were helpful to increasing properties of pure Aluminium by addition. The influence of reinforced ratio of silicon carbide, Boron carbide and fly-ash particles on mechanical behavior was examined. The effect of different weight percentage of silicon carbide, Boron carbide and fly-ash in composite on tensile strength, hardness, microstructure was studied. It was observed that the hardness & tensile strength of the composites increased with increasing reinforcement elements addition in it. The distribution of silicon carbide, Boron carbide and fly-ash particles was uniform in aluminum.


Author(s):  
Hamid M. Mahan ◽  
Malia M. Farhan ◽  
Thaer G. Shaalan

This paper concerns developing the mechanical properties of unsaturated polyester. This work involves preparing a composite material and reinforcing it using river shell particles with volume fractures of (5%, 10%, 15%, 20%, 25%). The composite materials undergone mechanical tests with regard to hardness, tensile, and impact strength. The experimental results obtained show that the addition of river shell particles reduce the original tensile strength and impact strength up to 5% wt, while the hardness is increased with increasing addition of river shell particles percent.


2019 ◽  
Vol 13 (3) ◽  
pp. 5480-5492
Author(s):  
N. A. Johari ◽  
F. R. M. Romlay ◽  
W. S. W. Harun

The bio-active and biological affinity with bony tissue effect of hydroxyapatite (HA) marks as a chosen material for implants application. Uniting HA which has low mechanical properties that limit its application with a higher mechanical property of metallic biomaterial 316L stainless steel (316L) to form a biocomposite have been a solution to produce acceptable mechanical properties for human implant. The 316L/HA biocomposite would have attribute vital to current implant materials, like a low Young’s modulus, high compatibility, and bio-inertness. This study concentrates on investigating the mechanical and physical properties of the 316L/HA biocomposite fabricated by metal injection moulding. The synthesis HA was produced from calcium-Phosphate. While, Polypropylene (PP), Stearin Acid (SA) and primary binder, Paraffin wax (PW) used as a binder system. Different weight of HA (0, 5, 10 and 15 wt. %) ratios to SS 316L/HA were prepared. All samples were sintered at 1350 ºC for 2 hours soaking time. The result shows that 10 wt.% HA biocomposite and above have higher porosity and low mechanical strength. However, 5 wt.% HA biocomposite has a high relative density which 87.95% compared to other additive HA % and hardness 127.10 Hv. The Tensile strength and elongation of 316L/HA biocomposite exhibit decreased as the content of HA wt.% increase which similar properties with the human bone that lower than 130 MPa (tensile strength). Therefore, 5 wt.% HA biocomposite is found to be the most excellent powder ratio for 316L/HA biocomposite regarding mechanical and physical properties and to achieve the mechanical strength of the biocomposite is necessary an amount of HA content in the composite are smaller than 15 wt.%.  


2019 ◽  
Vol 800 ◽  
pp. 205-209 ◽  
Author(s):  
Anete Smoca ◽  
Silvija Kukle ◽  
Zane Zelсa

In this study 3 samples of bio-composite materials with different proportion of hemp fibers in the PLA matrix were developed, their comparative analysis and certain mechanical properties were investigated. Bio-composite hemp and polylactide (PLA) fibers were evenly blended using carding technology. The obtained blanks were treated for thermosetting at a fixed temperature of 180°C and a pressure of 100 kN, as well as controlled heating, compression and cooling time were applied. The mechanical properties (tensile strength σt, elastic modulus Et, relative extension ɛt) of composite material were determined.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Monika Łukomska-Szymańska ◽  
Joanna Kleczewska ◽  
Joanna Nowak ◽  
Mariusz Pryliński ◽  
Agata Szczesio ◽  
...  

Aim of the study was to evaluate mechanical properties of light-curing composite materials modified with the addition of calcium fluoride. The study used one experimental light-curing composite material (ECM) and one commercially available flowable light-curing composite material (FA) that were modified with 0.5–5.0 wt% anhydrous calcium fluoride. Morphology of the samples and uniformity of CaF2distribution were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Stored dry ECM enriched with 0.5–1.0 wt% CaF2showed higher tensile strength values, while water storage of all modified ECM specimens decreased their tensile strength. The highest Vickers hardness tested after dry storage was observed for 2.5 wt% CaF2content in ECM. The addition of 2.0–5.0 wt% CaF2to FA caused significant decrease in tensile strength after dry storage and overall tensile strength decrease of modified FA specimens after water storage. The content of 2.0 wt% CaF2in FA resulted in the highest Vickers hardness tested after wet storage. Commercially available composite material (FA), unmodified with fluoride addition, demonstrated overall significantly higher mechanical properties.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


Sign in / Sign up

Export Citation Format

Share Document